
ARTICLE IN PRESS

JID: CAG [m5G; August 30, 2017;7:57]

Computers & Graphics xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Issue on CAD/Graphics 2017

Exclusive grouped spatial hashing

Weiwei Duan , Jianxin Luo

∗, Guiqiang Ni , Bin Tang , Qi Hu , Yi Gao

Q1

PLA University of Science and Technology, Haifu Lane #1 Nanjing, China

a r t i c l e i n f o

Article history:

Received 15 June 2017

Revised 15 August 2017

Accepted 15 August 2017

Available online xxx

Keywords:

Exclusive grouped hashing

Multidimensional hashing

Spatial data

Repetitive data

a b s t r a c t

A novel multidimensional hashing scheme, named the Exclusive Grouped Spatial Hashing (EGSH), which

compresses repetitive spatial data into several compact tables while retaining efficient random access,

is presented. EGSH represents a multi-level hashing without any losses. Moreover, EGSH compresses a

group of repetitive elements into the same entry of the hash tables, while it uses a coverage table to

mark the corresponding hash tables of the compressed data. Although, prior hashing work is related to

hash collisions mitigation, here a full use of these collisions is obtained and therefore the spatial data

compression rate is improved. The performance of exclusive grouped spatial hashing is presented in 2D

and 3D graphic examples.

© 2017 Published by Elsevier Ltd.

1. Introduction 1

The compressing and storing of spatial data represents a funda- 2

mental issue in computer graphics. Many graphics applications in- 3

volve spatial data that generally include a large number of repeti- 4

tive elements. For instance, 2D and 3D textures are represented by 5

spatial data which are often repetitive. A proper compromise be- 6

tween efficient storage and access performance of spatial data has 7

become a hot research topic. Traditional hash algorithms typically 8

perform sequential probes into the hash table. The varying num- 9

ber of probes per query leads to GPU inefficiency, due to the SIMD 10

(Single Instruction Multiple Data) parallelism all threads wait for 11

the worst-case number of probes. 12

In 2006, Lefebvre and Hoppe proposed for the first time the use 13

of a GPU to access a hash table using a perfect hashing [1] . The 14

proposed method has a constant look-up time and simple access 15

to the data from the GPU. However, the hash table construction 16

is expensive because the item location depends on the locations 17

of previous items. In the perfect hashing scheme, all defined items 18

should be packed into different locations of the hash table. In other 19

words, even the repetitive items should be stored in different en- 20

tries of the hash table. 21

Uniform spatial partitioning data structures, such as quadtrees 22

and octrees, often provide efficient storage for repetitive data com- 23

pression. These data structures usually contain unused entries in 24

their hierarchies, and maintain a costly sequence of parent-to-child 25

pointer links. Choi et al. [2] proposed a linkless octree to en- 26

code the subdivided nodes using a perfect hashing without explicit 27

∗ Corresponding author.

E-mail address: luojianxin555@163.com (J. Luo).

parent-to-child pointer links. However, the hierarchical structures 28

are still inefficient for random node access on the GPUs. 29

In this paper, we present a novel hashing scheme named 30

Exclusive Grouped Spatial Hashing (EGSH) that efficiently com- 31

presses repetitive data into tiny compact hash tables without 32

losses while maintaining simple random access to the GPUs. The 33

term “Grouped” refers to repetitive data with the same values 34

which are considered as a group of elements. A group of repeti- 35

tive elements are compressed into the same entry of the hash ta- 36

bles. The term “Exclusive” denotes that each entry of the hash ta- 37

bles should store maximum one group of elements, i.e. elements of 38

different groups cannot be packed into the same entry. The term 39

“Spatial” means that hashing is used for point queries in mul- 40

tidimensional datasets, which can be efficiently implemented for 41

GPUs. 42

In order to store the repetitive data efficiently, a sequence of 43

similar multidimensional hash functions, which iteratively pack de- 44

fined elements into hash tables were defined by: 45

h i (p) = M 0 p mod m i , 1 � i � k (1)

where the parameter k represents the total number of iterations. In 46

the i th iteration, the hash function h i (p) maps defined elements to 47

the hash table whose size, labeled as m i , depends on the number 48

of groups in the uncompressed data. For each entry q in the hash 49

table, we select an element value whose attributive group has the 50

most repetitive elements amongst all data mapped to the position 51

q . Thus, each entry of the hash table can replace as many repeti- 52

tive elements as possible. The uncompressed elements are pushed 53

into the next iteration. EGSH compresses all repetitive data using 54

several tiny hash tables, which enables efficient random access to 55

the GPUs. 56

http://dx.doi.org/10.1016/j.cag.2017.08.012

0097-8493/© 2017 Published by Elsevier Ltd.

Please cite this article as: W. Duan et al., Exclusive grouped spatial hashing, Computers & Graphics (2017),

http://dx.doi.org/10.1016/j.cag.2017.08.012

http://dx.doi.org/10.1016/j.cag.2017.08.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
mailto:luojianxin555@163.com
http://dx.doi.org/10.1016/j.cag.2017.08.012
http://dx.doi.org/10.1016/j.cag.2017.08.012

2 W. Duan et al. / Computers & Graphics xxx (2017) xxx–xxx

ARTICLE IN PRESS

JID: CAG [m5G; August 30, 2017;7:57]

Fig. 1. Representation of exclusive grouped hashes for repetitive spatial data compression in a 2D image. The original 512 2 domain U contains a set of 86,885 pixels, which

can be divided into 1 507 groups according to their values. Exclusive grouped hashes were used to iteratively compress as many repetitive data as possible into the same

entry of small hash tables with a size of 39 2 (= 1521 > 1507) until the uncompressed data became sparse enough. Then, the remaining uncompressed sparse data were

packed into the indirect domain U 6 using additional perfect spatial hashing.

The main contributions of this work are the use of very small 57

hash tables to store repetitive data, and the retainment of fast ran- 58

dom access to the GPUs. Previous research was mostly based on 59

hash collisions mitigation, here we present a novel many-to-one 60

hashing scheme that uses these collisions. For each entry in the 61

hash tables, one position can replace a large number of repetitive 62

elements, which generally can be equal to dozens, hundreds or be 63

even larger depending on the application scenario. The hash tables 64

do not contain unused entries and the construction process can be 65

precomputed on static spatial data. EGSH greatly reduces storage 66

requirements without any losses. Moreover, EGSH is simple to un- 67

derstand and easy to implement. When EGSH is implemented in 68

the GPU, only three shader instructions are needed to achieve effi- 69

cient random access. 70

Since the paper focuses on constant-time access compression, 71

EGSH was compared with the perfect spatial hashing (PSH) scheme 72

proposed by Lefebvre and Hoppe [1] . The experiments on different 73

graphic datasets have shown that two schemes have similar look- 74

up times, while EGSH has a better performance of both the con- 75

struction time and storage requirement. 76

2. Related work 77

Perfect hashing. Hash tables are commonly used in computer 78

graphics. Since the mid-eighties, many studies have been dedicated 79

to the realization of perfect hash tables [3–7] . These approaches 80

were very complex, which caused unreasonable space and time 81

costs. Thus just hundreds of elements could be used in practice. 82

The first practical scheme that achieved a good average-case per- 83

formance on large datasets was presented by Fox et al. [8] . They 84

ordered the search for hash functions based on the degree of the 85

vertices in a graph that represented word dependencies. 86

Sager [4] presented a hash to map string keys. The hash con- 87

tained three respective hash functions together with two auxiliary 88

tables. Lefebvre and Hoppe [1] extended the basic framework of 89

Sager [4] to 2D and 3D spatial spaces. Different from Sager [4] , 90

Lefebvre and Hoppe used only one single auxiliary table and two 91

respective hash functions. They packed the sparse spatial data into 92

a compact hash table using a perfect hashing for the first time. By 93

achieving an efficient access to hash tables for GPUs, it provided a 94

far-reaching influence on later hashing research. Since the item lo- 95

cation depends on the locations of previous items, the inherent se- 96

quential construction of hash tables is very costly. Since each hash 97

entry stores only one element, the perfect hashing does not have a 98

good performance on highly repetitive data. 99

Parallel hashing. Based on the well-known Cuckoo hash pro- 100

posed by Pagh and Rodler [9] , Alcantara et al. [10] presented the 101

first real-time hashing scheme with parallel hash table construc- 102

tion in the GPU. Since the cuckoo hashing is performed within a 103

small and fast on-chip memory, hash tables can be constructed and 104

accessed at interactive rates, outperforming the previous sequential 105

construction schemes. Due to the iterative insertion of elements 106

into hash tables, in the case of collision, already inserted keys are 107

removed. Since the hash construction might cause a failure espe- 108

cially at high load factors, they restart the process and rechoose a 109

new hash function. 110

García et al. [11] introduced a new parallel hashing by exploit- 111

ing spatial data coherence. They adapt the Robin Hood hashing of 112

[12] for the quick rejection of empty keys. Their scheme provides 113

a high load factor and fast access with a very low failure rate. 114

However, previous hashing schemes do not consider the issue 115

of repetitive data compression in the GPU. The repetitive elements 116

are still stored on different positions in the hash tables. 117

Spatial partitioning. In the standard computer graphic technique, 118

the spatial partitioning structures, such as quadtrees and octrees, 119

are commonly used for image/volume encoding and compression, 120

especially when the spatial datasets have a highly repetitive struc- 121

ture. However, the parent-to-child pointer linkers, produced by 122

subdividing each spatial cell into child cells, leads to a waste of 123

storage. 124

To increase the efficiency, researchers [13,14] used spatial hash- 125

ing techniques to encode quadtrees and octrees. Andrysco and Tric- 126

oche [15] presented pointerless octrees in 2010. Choi et al. [2] cre- 127

ated a linkless octree without storing explicit parent-to-child links. 128

Their method encodes the subdivided nodes using a perfect spa- 129

tial hashing while retaining coarse-to-fine hierarchical structures. 130

Scandolo et al. [16] proposed a lossless compression scheme for 131

high-resolution data based on sparse quadtree encoding. Using 132

the local choosing of the most prominent value, they produced a 133

sparse encoding in the form of a hierarchy and obtained high com- 134

pression rates. 135

Laine and Karras [17] presented a sparse voxel octree (SVO) 136

which can efficiently carve out empty space. Kampe et al. [18] con- 137

structed a directed acyclic graph (SVDAG) from an SVO by simply 138

merging identical subtrees. As the SVDAG allows nodes to share 139

pointers to identical regions of space, the storage cost has been im- 140

proved. Villanueva et al. [19] made an extension of the sparse voxel 141

DAG. They showed a symmetry-aware sparse voxel DAG (SSVDAG) 142

by merging subtrees that are identical up to a similarity transform. 143

Dado et al. [20] and Dolonius et al. [21] both showed how to ap- 144

ply DAG compression to non-binary data. These approaches have a 145

Please cite this article as: W. Duan et al., Exclusive grouped spatial hashing, Computers & Graphics (2017),

http://dx.doi.org/10.1016/j.cag.2017.08.012

http://dx.doi.org/10.1016/j.cag.2017.08.012

Download English Version:

https://daneshyari.com/en/article/6876851

Download Persian Version:

https://daneshyari.com/article/6876851

Daneshyari.com

https://daneshyari.com/en/article/6876851
https://daneshyari.com/article/6876851
https://daneshyari.com

