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a b s t r a c t 

Trimmed B-spline surfaces are common in the geometric computer aided design (CAD) community due 

to their capability to represent complex shapes that can not be modeled with ease using tensor product 

B-spline and NURBs surfaces. However, in many cases, handling trimmed-surfaces is far more complex 

than tensor-product (non-trimmed) surfaces. Many algorithms that operate on tensor-product surfaces, 

such as algorithms toward rendering, analysis and manufacturing, need to be specially adapted to con- 

sider the trimming domains. Frequently, these special adaptations result in lack of accuracy and elevated 

complexity. In this paper, we present an algorithm for converting general trimmed surfaces into a set of 

tensor-product (typically B-spline) surfaces. We focus on two algorithms to divide the parametric space 

of the trimmed surface into four-sided quadrilaterals with freeform curved boundaries, which is the first 

step of the algorithm. Then, the quadrilaterals are parameterized as planar parametric patches, only to be 

lifted to the Euclidean space using a surface-surface composition, resulting in tensor product surfaces that 

precisely tile the input trimmed surface in Euclidean space. The algorithm is robust and precise. We show 

that we can handle complex, industrial level, objects, with numerous high orders and rational surfaces 

and trimming curves. Finally, the algorithm provides user control on some properties of the generated 

tensor-product surfaces. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

Tensor product (Bézier, B-spline and NURBs) surfaces are widely 2 

used in geometric computer aided design (CAD) due to their sim- 3 

ple structure, mathematical form, and powerful geometrical prop- 4 

erties that make them intuitive to use. However, they are limited 5 

to the rectangular topology, making it difficult to create general 3D 6 

objects. That is, the rectangular topology does not allow to repre- 7 

sent with ease general boundaries, including holes. Due to these 8 

limitations of the tensor product surface representation, trimmed- 9 

surfaces were introduced [1] : 10 

Definition 1.1. A trimmed B-spline surface , S t , is a tensor-product 11 

B-spline surface, S , whose domain is bounded by a set of trimming 12 

B-spline closed curves, C t . Typically, one, outer boundary trimming 13 

curve exists, and other internal trimming curves define holes in 14 

the parametric domain. The orientation of the trimming curves is 15 

defined such that the trimmed-surface lies on the same side (e.g 16 

right) of the trimming curves, as we move along the trimming 17 

curve. 18 
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A common method for creating CAD models is by applying 19 

Boolean set operations between simpler models [2–4] , where the 20 

intersection curves between the surfaces of the models define the 21 

trimming curves. In the ensuing discussion and unless otherwise 22 

stated, we will refer to a trimmed B-spline surface/curve while it 23 

can also be a Bézier or a NURBs surface/curve. 24 

Compared to tensor-product surfaces, trimmed-surfaces ease 25 

the process of representing results of Boolean set operations, and 26 

allow simpler modeling of complex shapes. However, there are 27 

difficulties in using trimmed-surfaces compared to tensor prod- 28 

uct surfaces. Due to the complex parametric boundaries and the 29 

non-rectangular topology, powerful geometrical properties of the 30 

B-spline representation, such as the convex hull property [1] , are 31 

less faithful to trimmed-surfaces than to tensor-product surfaces. 32 

Algorithms designed for tensor product B-spline surfaces, such as 33 

algorithms toward rendering, manufacturing and analysis, do not 34 

directly extend to trimmed-surfaces and require special treatments, 35 

if at all feasible. 36 

A recent development in physical analysis, Iso Geometric Anal- 37 

ysis (IGA) [5] , performs the analysis directly in spline spaces over 38 

the spline surfaces of the models, which practically means mod- 39 

els with trimmed-surfaces. IGA requires precise integration over 40 

the surfaces, among others. However, integration over trimmed 41 
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B-spline basis functions is a challenging non-trivial task, in the 42 

general case. Approximating trimmed-surfaces by piecewise-linear 43 

elements, in order to simplify the integration process, will result 44 

in loss of accuracy and might affect the quality and convergence 45 

of the analysis. Methods to precisely integrate over the trimming 46 

domains are required, in order to have a complete and accurate 47 

IGA over trimmed-surfaces. One way to achieve this goal, is by first 48 

converting the trimmed-surfaces to tensor-products. In this work, 49 

we present the untrimming process not only as a geometry conver- 50 

sion process but also as an intermediate representation to precisely 51 

integrate over trimmed domains and hence is a precise fit to the 52 

IGA approach, for trimmed surfaces. 53 

In this paper, we introduce an algorithm with two variations 54 

for converting general trimmed-surfaces into a set of tensor prod- 55 

uct B-spline surfaces, a process we denote as untrimming . The algo- 56 

rithm is robust and precise 1 , and is able to handle complex indus- 57 

trial models composed of thousands of trimmed-surfaces. The al- 58 

gorithm first divides the trimmed parametric domain into quadri- 59 

laterals with freeform boundary curves while precisely preserving 60 

the trimming curves. Then, the quadrilaterals are parameterized 61 

into planar patches. Finally, these (tensor-product planar) patches 62 

are lifted to the Euclidean space via a symbolic surface-surface 63 

composition [6–8] . The end result is a precise tiling of the origi- 64 

nal trimmed surface, by tensor product surfaces, albeit of higher 65 

degrees. The main contribution of this work includes two varia- 66 

tions of a quadrangulation algorithm of freeform (trimmed) do- 67 

main. The first variation of the algorithm builds the quadrangula- 68 

tion using a fast line-sweep based algorithm, and the second vari- 69 

ation builds the quadrangulation based on the minimization of a 70 

given weight function, which enables some control over different 71 

desired properties of the generated output. The untrimming algo- 72 

rithm can handle rational and arbitrary order trimming curves and 73 

trimmed-surfaces. 74 

We like to emphasize that the presented conversion is precise 75 

for each individual trimmed surface. If cracks (black holes) ex- 76 

ist (i.e. due to imprecise Boolean Set operations) between differ- 77 

ent trimmed surfaces, these cracks will be precisely reconstructed, 78 

as this work focus on the precise reconstruction of individual 79 

trimmed surfaces as tensor products. 80 

The rest of this document is organized as follows. Section 2 dis- 81 

cusses related work and in Section 3 , we describe our untrimming 82 

algorithm, with its two variations. In Section 4 , we present some 83 

results of untrimming of several trimmed surfaces’ domains and 84 

CAD models, and compare the different proposed methods. Finally, 85 

in Section 5 , we conclude and discuss future planned research. 86 

2. Related work 87 

Several studies have proposed algorithms for generating quad 88 

meshes, such as [9–12] . However, these algorithms have been de- 89 

veloped for triangular surface meshes, and are not easily adapted 90 

to trimmed B-spline surfaces with high-order B-spline trim- 91 

ming curves. A method for converting trimmed NURBs surfaces 92 

to Catmull–Clark subdivision surfaces is described in [13] . The 93 

method in [13] is limited to bi-cubic NURBs. 94 

Other studies focused on rendering of trimmed-surfaces. 95 

Schollmeyer et al. [14] proposed a fast and direct method for 96 

rendering trimmed-surfaces that is aimed to avoid the inaccura- 97 

cies introduced if the trimming curves are not precise. Martin 98 

et al. [15] proposed a ray tracing algorithm for trimmed-NURBs 99 

and provided an algorithm for ray-NURBs intersection that is based 100 

on hierarchical pruning and numerical refinements. Both meth- 101 

ods, [14] and [15] , exploit algorithms for a point inclusion test in 102 

1 In this work, precise denotes a precision that approaches the accuracy of the 

hardware (machine precision). 

the trimmed parametric domain. However, these methods allow a 103 

pixel error approximation in the trimming curve point inclusion 104 

test, and thus appropriate for rendering only. Further, it is unclear 105 

how can these methods be extended to precisely handle trimmed 106 

surfaces, for general, non-rendering, tasks. 107 

Approximating trimmed-surfaces by a set of primitives have 108 

been studied, for example, in [16–18] , where the challenge is to 109 

minimize the number of approximating triangles with respect to a 110 

user defined error tolerance. A common problem when tessellating 111 

trimmed surfaces, is the generation of cracks and gaps along com- 112 

mon trimming boundaries between neighboring trimmed-surfaces 113 

(also known as ”black holes”). Several studies have addressed the 114 

cracks problem [19,20] and suggested methods for fixing the tes- 115 

sellation errors and stitching the cracks. The cracks’ problem could 116 

have potentially been avoided if the trimming of the trimmed sur- 117 

face has been precise and the surface is precisely converted to a 118 

set of tensor product surfaces. Unfortunately, the computation of 119 

the surface-surface intersection curves, as part of Boolean set op- 120 

erations, are rarely within machine precision. 121 

The conversion of trimmed-surfaces into tensor-product sur- 122 

faces have been studied in [6,21–24] . Hoschek and Schneider 123 

[22] uses curvature oriented segmentation in order to obtain bi- 124 

cubic Bézier patches, but [22] can not handle rational trimmed 125 

surfaces, and approximate them by a bi-cubic or bi-quintic polyno- 126 

mial surfaces. Further, the mapping process of the resulted quadri- 127 

laterals from the parametric domain to the Euclidean space is not 128 

precise and utilizes interpolation methods. Li and Chen [24] parti- 129 

tions the parametric space into quadrilaterals using feature points 130 

of the trimming curves, but it is designed to be precise only for bi- 131 

cubic polynomial B-spline surfaces, in an effort to reduce the de- 132 

grees of the outcome. The trimming domain is partitioned in turn 133 

points, locations on the trimming curve C t (t) = (u (t ) , v (t )) that 134 

satisfies | u ′ (t) | = | v ′ (t) | , and results in over-partitioning of the do- 135 

main. Further, a closed piecewise C 1 discontinuous trimming curve 136 

may have no location for which | u ′ (t) | = | v ′ (t) | , cases that are not 137 

discussed in [24] while they are handled in this work. Hamann 138 

et al. [21] employs a scan-line based algorithm for partitioning the 139 

parametric space to a rectangular domains. However, their method 140 

involves triangulation and Voronoi-diagram computation over the 141 

trimmed-parametric domain, which makes it less robust and com- 142 

plex to implement. Also, [21] assumes that the ruling between any 143 

two monotone regular, (non vanishing derivative), curves always 144 

produces a regular (consistent Jacobian) surface, which we show 145 

to not necessarily be the case (and also show a remedy). Hui et al. 146 

[23] also employs a Voronoi-diagram approach for partitioning the 147 

trimmed domain into simpler cells, and improves the method pro- 148 

posed in [21] by using feature point matching approach rather than 149 

a scan-line approach in order to reconstruct four-sided surfaces. 150 

However, [23] does not provide methods for mapping the resulted 151 

tensor-product surfaces from the parametric space to the Euclidean 152 

space. Finally, while [22–24] recognize the importance of only reg- 153 

ular patches in the output, they do not discuss how to achieve this 154 

goal. 155 

In [6] several applications of functional composition of B-spline 156 

curves and surfaces have been introduced. Following [6] , we use 157 

a symbolic surface-surface composition as the final step to lift 158 

the generated quadrilaterals from the parametric space to the Eu- 159 

clidean space. Elber and Kim [6] discusses an algorithm for con- 160 

verting a trimmed-surface to tensor-product surfaces. However, the 161 

algorithm in [6] does not offer a general quadrangulation and 162 

hence is limited to simple topologies and can no t handle indus- 163 

trial level trimmed surfaces. None of the above methods is capable 164 

of precisely handling general models with high order rational trim- 165 

ming curves and trimmed-surfaces. Also, previous methods, with 166 

the exception of [6] , do not involve general symbolic computa- 167 

tion to provide precise and robust partition of the parametric do- 168 
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