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a b s t r a c t 

Given two data points and the associated unit tangents, cubic G 

1 Hermite interpolation is a simple and ef- 

ficient scheme to construct fair curves by optimizing certain energy functionals. In order to obtain shape- 

preserving interpolation desired for applications, this paper presents cubic G 

1 Hermite interpolation by 

minimizing curvature variation energy subject to a feasible region, with the advantage of handling ar- 

bitrary G 

1 data. As a result, the G 

1 interpolating curves can always maintain specified end tangent di- 

rections by restricting the two parameters provided by G 

1 constraint to be positive; and the numerical 

solution is obtained by an iterative algorithm using the block coordinate descend method. This approach 

can be further extended to quintic G 

2 Hermite interpolation for input G 

2 data. A number of comparative 

experiments are conducted to verify the applicability and effectiveness of the proposed method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The construction of fair curves is an important issue in com- 

puter aided design (CAD) and related application fields [1–4] . Al- 

though it is difficult to characterize the “fairness” of curves in a 

quantitative way, a general approach to constructing fair curves is 

realized by minimizing an energy functional representing the fair- 

ness, subject to the prescribed geometric constraints. Because cur- 

vature is the universal shape measure for curves, strain energy (SE) 

(also called bending energy) and curvature variation energy (CVE) 

are two widely adopted metrics of fairness [1,5] , which are respec- 

tively defined for a planar curve b ( t ), t ∈ [0, 1] by 

E SE (b ) = 

∫ 1 

0 

[ κ(t)] 2 d t and E CVE (b ) = 

∫ 1 

0 

[ κ ′ (t)] 2 d t (1) 

where κ(t) = 

b ′ (t) ×b ′′ (t) 

‖ b ′ (t) ‖ 3 is the curvature of b ( t ). Throughout this 

paper, the scalar cross-product, x × y := x 1 y 2 − x 2 y 1 , is used to give 

a compact expression for some formulas. 

Geometric Hermite interpolation first introduced by de Boor 

et al. [6] deals with the interpolation of geometric data such as 

positions, unit tangents, and curvatures. In contrast to the classi- 

cal Hermite interpolation, this approach allows additional parame- 

ters that can be used to produce more pleasant shapes by direct 

assignments or optimization techniques; geometric continuity is 
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preferred in various applications such as shape modeling, because 

it is independent of parameterization and is merely a relaxation 

of parameterization (but not a relaxation of smoothness). It was 

shown in [6] that a planar cubic curve can interpolate the input 

G 

2 data by assigning the four parameters to suitable values, but 

the numerical solutions exist only when admissibility conditions 

on the data are met. Another kind of methods represents a curve 

using more than enough degrees of freedom to satisfy geometric 

constraints or specific desires on its shape, with the remaining de- 

grees of freedom determined in an optimal way. For example, a 

cubic G 

1 interpolating curve always has two degrees of freedom, 

whose values are more suitably determined by minimizing an en- 

ergy functional (see e.g. [7–10] ). Jakli ̌c and Žagar [8,9] proposed 

two elegant schemes by minimizing the approximate strain en- 

ergy and the approximate curvature variation energy respectively, 

and showed the asymptotic behavior of both schemes. However, it 

is important to note that for any polynomial curve other than a 

straight line, these approximate energies are not identical to their 

actual counterparts and may usually lead to unsatisfactory results. 

Recently, Lu [11] constructed a quintic curve model with four free 

parameters for G 

2 interpolation. 

Deng and Ma [12] proposed a biarc-based subdivision scheme 

for generating planar spirals without any condition on the in- 

put G 

2 data; but the subdivision spirals are non-polynomial. Yang 

[13] studied G 

1 Hermite interpolation using logarithmic arc splines, 

where a practical algorithm is developed for computing the solu- 

tions. Also, Wu and Yang [14] presented G 

1 and G 

2 Hermite inter- 

polations by using some intrinsically defined planar curves whose 
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curvature radius functions are low-degree polynomials in terms of 

the tangent angle. The interpolating curves obtained by [14] admit 

explicit expressions for the offset curves and become spirals when 

the conditions on input data are satisfied; but they are not repre- 

sented in polynomial form. 

Circles and circular arcs, having a simple expression and con- 

stant curvature, are widely used in the CAD literature and also 

play a critical role in representing a myriad of parts used in man- 

ufacturing. Farin [5] proposed G 

1 Hermite interpolation with circu- 

lar precision, by using a rational cubic curve model. Later, Li et al. 

[15,16] constructed C-shaped G 

2 Hermite interpolation with conic 

precision. However, the rational representation may suffer from 

several inherent drawbacks. Hu [17] proposed an explicit and ef- 

fective method for G 

1 approximation of conic sections using poly- 

nomial curves of arbitrary degree. 

In this paper, we study planar cubic G 

1 and quintic G 

2 Hermite 

interpolations by minimizing curvature variation energy. According 

to Farin [1] , curvature variation energy is a more suitable and ac- 

ceptable metric for producing aesthetically pleasant shapes since 

the variation in curvature is regarded as more important than the 

magnitude of curvature. Unfortunately, for any polynomial curve, 

its curvature variation energy is always highly nonlinear; therefore, 

we propose a numerical approach for solutions, based on numeri- 

cal integration. 

For cubic G 

1 Hermite interpolation, we formulate the problem 

as a constrained minimization problem subject to a user-defined 

feasible region. Compared to the previous method [9] based on 

approximate curvature variation minimization, the actual curva- 

ture variation energy is used here. By restricting the two param- 

eters ( α0 , α1 ) provided by G 

1 constraint within the feasible re- 

gion, we are able to match arbitrary G 

1 data without any con- 

dition, while meeting the shape-preserving requirement. Conse- 

quently, our method is application-independent; whereas the pre- 

vious methods [5,7–9] do not always guarantee a positive solution 

of ( α0 , α1 ), which may restrict their applications in shape design. 

For quintic G 

2 Hermite interpolation, the problem is manipu- 

lated analogously to the cubic G 

1 case, but with four parameters 

( α0 , α1 , β0 , β1 ). In [11] , after expressing β0 and β1 as quadratic 

functions of ( α0 , α1 ), the approximate strain energy is further sim- 

plified to a quartic function of ( α0 , α1 ). Whereas curvature varia- 

tion energy used here is expressed in four unknowns and has to be 

calculated through numerical integration. Thus a higher computa- 

tional cost is required. 

The remainder of this paper is organized as follows. We present 

cubic G 

1 Hermite interpolation in Section 2 and quintic G 

2 Hermite 

interpolation in Section 3 . In Section 4 we show many examples in 

Fig. 1. An example of search path of ( α0 , α1 ). 

Table 1 

Curvature variation energy and computation time 

for the resulting curves in Fig. 2 . (Note: the sym- 

bol “–” indicates that it is negligible in computa- 

tion time.) 

Fig. Method [9] This paper 

E CVE Time E CVE Time (s) 

(a) 7.418 – 0.024 0.152 

(b) 171.851 – 9.372 0.161 

(c) 45.163 – 28.158 0.157 

(d) 505.795 – 12.183 0.165 

(e) N/A N/A 7.614 0.154 

(f) N/A N/A 111.146 0.166 

comparison with the previous methods. Finally, we conclude the 

paper in Section 5 . 

2. Cubic G 

1 Hermite interpolation via curvature variation 

minimization 

Given G 

1 Hermite data { P 0 , T 0 , P 1 , T 1 } represented by the po- 

sitions and unit tangents at two points, a cubic G 

1 interpolating 

curve is represented in Bézier–Bernstein form by 

b (t) = 

3 ∑ 

i =0 

b i B 

3 
i (t) , t ∈ [0 , 1] , (2) 

where B n 
i 
(t) = 

(
n 
i 

)
t i (1 − t) n −i are the Bernstein polynomials of de- 

gree n and the control points b i ∈ R 

2 are expressed as 

b 0 = P 0 , b 1 = P 0 + 

α0 

3 

T 0 , b 2 = P 1 − α1 

3 

T 1 , b 3 = P 1 , (3) 

with α0 , α1 > 0 being real parameters. 

Jakli ̌c and Žagar [9] obtained the optimal value of ( α0 , α1 ) by 

minimizing 
∫ 1 

0 [ b 

′ (t) × b 

′′′ (t )] 2 d t , and the unique global minimum 

is reached at 

α0 = −2 

T 1 × (P 1 − P 0 ) 

T 0 × T 1 

, α1 = 2 

T 0 × (P 1 − P 0 ) 

T 0 × T 1 

. (4) 

However, α0 and α1 are guaranteed to be positive if and only if T 0 
and T 1 are located at opposite sides of the straight line P 0 P 1 and 

with a rotation angle less than π . 

In this paper, we determine ( α0 , α1 ) by minimizing the curva- 

ture variation energy; that is, the problem is formulated as 

min 

(α0 ,α1 ) ∈ D 
E CVE (b ) := 

∫ 1 

0 

[ κ ′ (t )] 2 d t . (5) 

In order to obtain positive solutions for shape-preserving interpo- 

lation demanded by various applications, it is important and prac- 

tically useful to impose a feasible region on ( α0 , α1 ): 

D = 

{
(α0 , α1 ) ∈ R 

2 | 0 < l 0 d ≤ α0 ≤ u 0 d, 0 < l 1 d ≤ α1 ≤ u 1 d 
}
, 

(6) 

where d = ‖ P 1 − P 0 ‖ , l i and u i are user-specified lower and upper 

bounds. Noting that α0 = ‖ b 

′ (0) ‖ and α1 = ‖ b 

′ (1) ‖ are closely re- 

lated to the magnitudes of end tangents, it is geometrically intu- 

itive and meaningful to adjust the bounds of D and then to affect 

curve shape. In terms of the feasible region, the resulting curve 

is forced to maintain the specified tangent directions at the end- 

points. Moreover, it is even beneficial to seek a solution that lies 

in a small region. Noting that α0 and α1 should not be too small 

or too large, D = [0 . 2 d , 5 d ] 2 is suggested for the feasible region; in 

addition, it may be interactively adjusted if necessary. 

The derivative of curvature yields 

κ ′ (t) = 

ψ(t) 

‖ b 

′ (t) ‖ 

5 
, (7) 

Please cite this article as: L. Lu et al., Planar cubic G 

1 and quintic G 

2 Hermite interpolations via curvature variation minimization, Com- 

puters & Graphics (2017), http://dx.doi.org/10.1016/j.cag.2017.07.007 

http://dx.doi.org/10.1016/j.cag.2017.07.007


Download	English	Version:

https://daneshyari.com/en/article/6876854

Download	Persian	Version:

https://daneshyari.com/article/6876854

Daneshyari.com

https://daneshyari.com/en/article/6876854
https://daneshyari.com/article/6876854
https://daneshyari.com/

