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a b s t r a c t

We present a novel method for the modeling and optimization of the material distribution inside 3D
shapes, such that their 3D printed replicas satisfy prescribed constraints regarding mass properties. In
particular, we introduce an extension of ray-representation to shape interior modeling, and prove this
parametrization covers the optimal interior regarding static and rotational stability criteria. This compact
formulation thoroughly reduces the number of design variables compared to the general volumetric
element-wise formulation. We demonstrate the effectiveness of our reduced formulation for optimizing
shapes that stably float in liquids or spin around a prescribed axis.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Given the boundary surface representing the exterior of a 3D
shape, we are interested in computing a material distribution in its
interior, such that the resultant mass properties (i.e., the center of
mass and the moment of inertia) satisfy a set of stability criteria.
This design problem becomes very relevant in the era of 3D
printing for fabricating customized shapes which stand [1,2],
spin [3], or float [4,5] in a prescribed orientation.

A general formulation to this design problem is shape optimization
on a volumetric basis [1,5]. To this end, the shape interior is discretized
by hexahedral elements known as voxels, and each voxel is assigned a
design variable. This parametrization results in a large number of design
variables for accurately representing complex shapes.

To reduce the number of design variables, Bächer et al. [3]
employ an adaptive octree grid where the cells split or merge on
the fly during the optimization process. Musialski et al. [4] propose
shape optimization by treating the thickness of the surface shell as
design variables. Together with a reduced parametrization of offset
surfaces, this formulation was demonstrated for static and rota-
tional stability. However, the shell representation restricts the
solution space, and thus an optimal solution that lies outside of
this space cannot be reached.

In this paper, we present a reduced yet complete parametrization
of shape interior, specifically designed for optimizing mass properties.

Based on an analysis of mass properties and stability criteria, we
prove that the optimal solution lies in a subspace represented com-
pactly by an extension of ray-representations (ray-reps), which
represent the shape by its intersections with parallel rays. In parti-
cular, we extend the concept of ray-reps by enhancing each ray with
intervals distinguishing solid and void phases along this ray. The exact
values of these intervals are automatically determined by an optimi-
zer for controlling mass properties.

The specific contributions of our paper include:

� A compact parametrization of shape interior, which significantly
reduces the number of design variables in shape interior
optimization, and

� Insights into the optimal solution of mass properties under
static and rotational stability criteria, which prove completeness
of the reduced formulation, i.e., the optimal solution lies in the
reduced space.

2. Ray-reps for shape interior modeling

We start by briefly introducing ray-reps for solid modeling, and
then go on to the extended version for modeling the shape interior
which can be partially void.

Ray-reps for solids: Ray-rep is a compact boundary representa-
tion, and it was introduced to the solid modeling community by Ellis
et al. [6]. Similar approaches using the intersections between the
surface mesh and parallel rays have been proposed, e.g., marching
intersections [7], layered depth-normal images [8,9]. Ray-rep is
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based on the parametrization of an object's surface using a set of
parallel rays starting at a 2D grid. The solid is then represented by
the sequence of intersections between its boundary surface and the
rays. We assume rays start from a uniform grid on the xy-plane, and
pierce along the z-axis which is aligned with the intended upright
direction of the solid. As illustrated in Fig. 1 (left) on a 2D R-shaped
solid, each ray has an even number of intersections with the
watertight boundary surface. For each pair of intersections, we
denote zmin to indicate the ray enters the solid, and zmax the ray exits
the solid. We then collect all pairs of intersections by

Rayisolid ¼ fxi; yi; zimin; z
i
maxg; ð1Þ

where xi and yi are the xy-coordinates of the ray origin.
Rap-reps for shape interior: To extend ray-reps to shape interior

modeling, we need intervals distinguishing solid and void regions along
each ray. As will be proven in the next section, between each pair of
intersections, there exists at most one solid region in the optimal
solution under static and rotational stability criteria. Therefore we
introduce two design variables zi0 and zi1, with ziminrzi0rzi1rzimax, to
represent the inner solid region. The ray-rep for shape interior is

Rayiinterior ¼ fxi; yi; zimin; z
i
max; z

i
0; z

i
1g: ð2Þ

Here zi0z
i
1 is solid while both ziminz

i
0 and zi1z

i
max are void. In the extreme

case of zi0 ¼ zi1, this ray is fully void; while in the extreme case of zimin
¼ zi0 and zi1 ¼ zimax, the ray is fully solid. The values of z

i
0 and zi1 are to be

determined by the optimizer. We note that a similar extension of ray-
reps for modeling heterogeneous materials has been presented by
Wang [10].

This representation inherits the compactness and simplicity of
original ray-reps, and thus provides a reduced parametrization for
shape optimization as we will explore.

3. Optimizing mass properties on ray-reps

3.1. Mass properties

The stability of an object is determined by its mass properties,
which include the total mass m, the center of mass c¼ ðcx; cy; czÞT ,
and the 3�3 symmetric moment of inertia I¼ ðIxx Ixy Ixz; Iyx Iyy Iyz;
Izx Izy IzzÞT . The mass properties are given by volume integrals over
the domain of the object. With the ray-reps for shape interior, and
assuming a constant material density ρ for the solid parts, the volume
integrals are expressed as summation of line integrals over all rays:

m¼ ρA
X
i

Z zi1

zi0

dz;

ct ¼
ρA
m

X
i

Z zi1

zi0

tdz; tAfx; y; zg;

Itt ¼ ρA
X
i

Z zi1

zi0

ðu2þv2Þdz; ft;u; vg ¼ fx; y; zg;

Iuv ¼ Ivu ¼ �ρA
X
i

Z zi1

zi0

uvdz; fu; vg � fx; y; zg;

where A is the area represented by a ray in the xy-plane. A is constant
since the rays are sampled uniformly, and its value depends on the
sampling resolution.

3.2. Static stability

The static status of standing and floating of an object is related
to its center of mass. Here we explain our formulation and prove
its completeness on floating, while an extension to standing can be
easily derived accordingly.

The object floats if its buoyancy balances the gravity, and its
center of mass should be at its lowest possible position, in order to
maximize floating stability. For simplicity, we choose a coordinate
frame such that the z-axis coincides with the intended upright
direction. The design problem is formulated as

minimize
z0 ;z1

cz; ð3Þ

subject to ðcx; cyÞ ¼ ðcb;x; cb;yÞ; ð4Þ

m¼mb; ð5Þ

ziminrzi0rzi1rzimax; 8 i; ð6Þ

where ðcb;x; cb;yÞ is the xy-coordinates of the buoyant center, i.e.,
the centroid of the displaced volume of fluid, and mb is the mass of
the displaced fluid. We postpone the calculation of cb, mb, and the
verification of floating stability to Section 3.4.

This reduced formulation is said to be complete in the sense that the
optimal solution in the general volumetric element-wise formulation
lies within the space defined by the above constraints on ray-reps.

Proof of completeness: Suppose in the volumetric element-wise
formulation, the optimal solution contains two separated solid
segments between a pair of intersections, denoted by ziaz

i
b and

zicz
i
d , with the order ziminrziaozibozicozidrzimax, see Fig. 2 (left).

We can easily find a replacement of these two solid segments by
one solid segment zi0z

i
1 , with zi0 ¼ zia, and zi1 ¼ zi0þzib�ziaþzid�zic ,

see Fig. 2 (right). This replacement does not alter the constraint
Eqs. (4) and (5), i.e., cx, cy, nor m, but reduces the objective Eq. (3),
i.e., cz. This basically means that the optimal solution should
contain at most one solid segment along each ray, since otherwise
it can be further optimized by this replacement.

Actually, in static stability, this formulation can be further
simplified by zi0 ¼ zimin, i.e., the solid segment, if exists, starts
always from the lowest position. This is in line with the objective
to minimize cz. This fact is employed to further reduce the number
of design variables by one half.

Fig. 1. Left: A solid of letter ‘R’ is represented by the intersections between its
boundary (black) and the rays (red), i.e., zmin and zmax for each pair of intersections.
Right: Two design variables z0 and z1 between each pair of intersections are
introduced for modeling shape interior which is not necessarily fully solid. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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