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a b s t r a c t

In linear least squares fitting of B-spline surfaces, the choice of knot vector is essentially important to the
quality of the approximating surface. In this paper, a heuristic criterion for optimal knot positions in the
fitting problem is formulated as an optimization problem according to the geometric feature distribution
of the input data. Then, the coordinate descent algorithm is used for the optimal knot computation.
Based on knot position optimization, an iterative surface fitting framework is developed, which adap-
tively introduces more knot isolines passing through the regions with more complex geometry or large
fitting errors. Hence, the approximation quality of the reconstructed surface is progressively improved up
to a pre-specified threshold. We test several models to demonstrate the efficacy of our method in fitting
surface with distinct geometric features. Different from the knot placement technique (NKTP method)
proposed in Piegl and Tiller [1] and the dominant-column-based fitting method (DOM-based method)
(Park [2]) which require input data in semi-grid or grid form, our algorithm takes more general data
points as input, i.e., any scattered data sets with parameterization. Comparing to NKTP method and
DOM-based method, our method efficiently produces more accurate results by using the same number
of knots.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fitting scattered data sets by surface with continuous repre-
sentation is a frequently encountered problem in the fields of
geometric modeling, geometric processing, reverse engineering
and computer vision, and so on. The major mathematical tools
used for continuous surface representation include implicit sur-
face, subdivision surface, and parametric spline surface. Among
them, parametric splines enjoy extensive popularity due to their
excellent properties, such as explicit mathematical expression,
convenience for derivative and integral and strong geometric
intuition. In the last few decades, a large number of works were
devoted to theoretical study or algorithm development for surface
fitting problem with different splines, e.g., classical B-splines and
Bézier basis [3], radial basis functions [4], T-splines [5,6], Delaunay
Configuration B-splines [7,8], Triangular B-splines [9], spherical
volumetric simplex splines [10] and manifold splines [11,12].
Among them, B-splines possess attractive properties, such as local
control, convex hull and optimal continuity, and they have become

one of the industry standards for shape modeling. Hence, B-spline
surface fitting is still a central topic of computer aided geometric
design and has been extensively studied.

In B-spline surface fitting, the data points are usually approxi-
mated by using a least squares formulation with respect to para-
meterization of input data, knot vectors and control points of B-
splines. Hence, the parameterization, knot vectors, and control
points all affect the fitting results. Much of the literature has
focused on estimating these variables. In particular, knot vectors
delicately influence the quality of approximation and the numer-
ical stability of the system of the least squares problem. The choice
of knot vector is crucial in effectively bounding approximation
error to a given threshold. However, the existing methods on
estimating the number of knots and their distribution are unsa-
tisfactory, especially when the data set has unevenly distributed
geometric features.

In this paper, we present an iterative algorithm that approx-
imates scattered data points with a B-spline surface up to a pre-
specified threshold. One of our contributions is the introduction of
a heuristic criterion for optimal knot distribution in B-spline sur-
face fitting. And, an efficient descent-based optimization algorithm
is tailored for the knot position optimization. Based on the cri-
terion, knots are adaptively added such that more knot isolines
pass through the region with high geometric feature measures or
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fitting errors, hence more control points are introduced to the
corresponding area on the surface. Unlike many existing methods
that only apply to grid points, our method works for scattered data
as long as its parameterization is available. The B-spline surface
generated by our algorithm has a reasonable number of control
points and is a highly accurate approximation to the input data.
Compared with conventional knot selection strategies based fit-
ting method, such as NKTP method [1] and DOM-based method
[2], our method can efficiently generate approximating surface
with higher accuracy.

2. Related work

The problem of approximating a given set of data points by a B-
spline surface is a fundamental problem and has been widely
investigated in fields of computer aided geometry design and
computer graphics. Here, we will only point to some results which
are closely related to our algorithm to give a background for
our work.

The common approach approximates the data points in the
least squares sense. In general, the following three issues must be
dealt with: parameterization of the input scattered data, place-
ment of knots, and choice of control points, all of them are
essentially important to the quality of the approximating surface.
Typically, if the parameters are given or pre-computed from the
input data and the knot vectors are already determined, the con-
trol points become the unknowns of a quadratic function and can
be obtained by solving a linear system of equations. However, it is
usually a difficult task to estimate the parameters or knot vectors.
Therefore, many research works focus on seeking appropriate
parameterization or/and knot placement for the least square fit-
ting problem.

In the earlier work, the input scattered data are assumed to be
evenly distributed and organized in grid or semi-grid form. Uni-
form or chordal length parameterization is satisfactory for gen-
erating parameter points. Then, knots are chosen as the averages
of certain number of consecutive parameters [3,13]. The approx-
imating surface may be wiggly when the number of data points is
close to the number of control points [1]. To overcome this issue,
Piegl and Tiller presented an improved knot placement algorithm
(NKTP), where knots are the averages of representative values of
parameter point groups [1]. These previous method selected knots
in a trivial manner such that each knot interval contains almost
the same number of parameter values, which make them difficult
to achieve adaptive fitting [2]. In our experiment, we find that the
NKPT method places inadequate knots in the regions with sharply
varied shape, hence the number of control point is not sufficient to
reconstruct the geometric features.

To obtain more accurate approximation results, a straightfor-
ward method is to minimize the least squares problem by treating
the parameters, knots and control point as unknowns. In that case,
the least squares problem becomes highly nonlinear and one
usually resorts to artificial intelligence methods for addressing this
optimization task, such as genetic algorithm [14,15], artificial
immune system algorithm [16], simulated annealing algorithm
[17], estimation of distribution algorithms [18] and particle swarm
optimization method [19]. Most of these methods focus on solving
the fitting problem with B-spline curves, and their effective gen-
eralization to surface fitting is unavailable. Xie and Qin [20,21]
developed interactive approaches for NURBS curve/surface fitting,
where parameters, knot vectors and control points are optimized
by conjugate gradient method. Besides simultaneous search of all
the optimal parameters, iterative algorithms are also proposed to
sequentially optimize subsets of the above quantities. For example,
iterative algorithms are proposed to alternatively optimize the

parameters and knot vectors for NURBS or B-spline surface fitting
in [22,23]. A B-spline surface fitting algorithm for approximating
point clouds with irregular topology was proposed in [24], where
steps of reparameterization and knot refinement are iteratively
applied. These global optimization algorithms could result in
approximations with high fitting quality, but they are computa-
tionally expensive in finding global/local optima (in minutes or
even hours). In addition, the number of knots usually needs to be
determined in advance for most mentioned methods; but in
practice, when a fitting tolerance is given, a simple guess before
optimization on this number could easily end up to be either too
many or too few.

A class of more efficient fitting strategies is to optimize para-
meterization only. For instance, Ma and Kruth [25] proposed an
approach to assign parameter values to randomly measured points
for B-spline surface fitting. Floater [26] presented a global and
shape-preserving parameterization for surface triangulations for
the purpose of well-behaved smooth surface interpolation and
approximation. Lai et al. [27] proposed a feature sensitive para-
meterization approach, which assigns more parameter space to
regions with higher geometric feature measures and thus benefits
uniform B-spline surface fitting. Based on new fitting error terms,
fitting techniques without parameterization are proposed in [28–
30]. Alternatively, one assumes that parameterization is not sub-
ject to the optimization and focuses on knot placement. As the
least squares fitting formulation is highly nonlinear with respect to
the knot positions and the number of knots is unknown to obtain
an approximant with desired quality, knots are usually placed
heuristically and/or adaptively. For example, an adaptive knot
placement algorithm for B-spline curve approximation to dense
and noisy data points is proposed in [31]. Park and Lee [32] pro-
posed an approach that selects dominant points from the input
parameter points to generate knots for B-spline curve fitting. Later,
this idea is generalized to choose dominant-column from the grid
data points to obtain knot vectors for the B-spline surface fitting
[2]. However, the dominant-column-based method (DOM-based
method) assumes input data be rectangular grid points, thus, it is
not applicable to data in more general forms. A similar problem for
optimizing knot spacings for subdivision surface has also addres-
sed in [33].

3. B-spline notations

Due to their favorable properties, B-splines have become well-
known mathematical tools in applications in fields such computer
aided design and computer graphics, and their theory has been
extensively and exhaustively studied in much of the literature. We
assume that the readers are already familiar with the basic con-
cepts of B-spline as can be found, for example, in [34]. In this
section, we only introduce notations of B-splines for the con-
venience of subsequent discussion.

Given knot vectors U ¼ fu�m ¼⋯¼ u0 ¼ 0;u1;…;up�1; up ¼⋯
¼ upþm ¼ 1g and V ¼ fv�n ¼⋯¼ v0 ¼ 0; v1⋯; vq�1; vq ¼⋯¼ vqþn

¼ 1g in u-direction and v-direction, respectively, a parametric
tensor B-spline surface of degrees (m,n) is defined as follows:

Sðu; vÞ ¼
Xpþm�1

i ¼ 0

Xqþn�1

j ¼ 0

Bi;mðuÞBj;nðvÞcij; ðu; vÞAΩ¼ ½0;1� � ½0;1� ð1Þ

where Bi;mðuÞ and Bj;nðvÞ are the B-spline basis functions of degree
m and n in u-direction and v-direction, respectively. cij for 0r ir
pþm�1 and 0r jrqþn�1 are the control points and the mesh
formed by them is called the control mesh. In this paper, we only
concentrate on B-spline surfaces which are clamped in both
parametric directions, i.e., the first and last m (resp. n) knots are
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