
Special Section on SIBGRAPI 2015

Spatial sorting: An efficient strategy for approximate nearest
neighbor searching

Marcelo de Gomensoro Malheiros a, Marcelo Walter bQ1

a Center for Exact and Technological Sciences, UNIVATES, Lajeado, Brazil
b Institute of Informatics, UFRGS, Porto Alegre, BrazilQ2

a r t i c l e i n f o

Article history:
Received 23 November 2015
Received in revised form
12 February 2016
Accepted 17 March 2016

Keywords:
Spatial sorting
k-nearest neighbors
Parallel algorithms
Data structures

a b s t r a c t

Many graphics and also non-graphics applications need efficient techniques to find the nearest neighbors
of a given query point. There are two approaches to address this problem: space-partitioning and data-
partitioning. We present a data-partitioning error-controlled strategy for solving the nearest neighbor
search (NNS) problem using spatial sorting as the basic building block. We improve on the neighborhood
grid method by doing an extensive study on novel spatial sorting strategies for bidimensional NNS,
providing significant performance and precision gains over previous works. Experiments demonstrate
that, for many dense 2D point distributions, our solution is competitive with more complex and tradi-
tional techniques, such as k-d trees and index sorting. We also show comparable results for the 3D case.
Our primary contribution is a dynamic, simple to implement, memory efficient, and highly parallelizable
solution for low-dimensional approximate nearest neighbor search.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Endless graphics applications demand efficient solutions for
finding the nearest neighbor, or set of neighbors, on a given set:
crowd simulations [1], procedural texturing [2], remeshing and
mesh simplification in geometric modeling [3,4], polygonization
[5,6], volumetric reconstruction [7], fluid simulation [8], animation
tasks [9], and particle-based triangular mesh generation [10]. The
nearest neighbor search (NNS) is, therefore, an essential operation
in many areas.

We are particularly interested in efficiently locating nearest
neighbors among points in the same set. More formally, given a set
S of points in a d-dimensional space and a query point P already in
S, we want to find the k closest points to P in S, according to some
distance metric.

Our motivation is an ongoing research on the generation of
biological patterns by massive 2D cell simulations, as shown in
Fig. 1. Both the NNS performance and the memory usage are our
primary concerns. In each simulation step cells may move, new
cells may born, and others die at random, so we also need that the
underlying data structure to be updatable in parallel. In other
words, as the set of points is continually changing, we must avoid
rebuilding the search data structure every time.

Recently, Joselli and colleagues [11] introduced the neighborhood
grid approach as an attractive alternative for low-dimensional NNS,
suitable for our particular simulation problem. Such technique cri-
tically depends on the spatial sorting of points in space, establishing a

global order. In this paper we analyze in depth such sorting opera-
tion in 2D, proposing new efficient spatial sorting strategies and
experimentally measuring their performance and precision in sev-
eral situations. We show that the resulting approach is general,
behaving well for different point distributions; memory efficient,
having very low data structure overhead; fast, by significantly
reducing the number of comparisons needed to achieve a sorted
state; and dynamic, adapting to a continually changing point set.

This paper is an extended version of a previous conference
paper [12]. We have made comparisons to a similar approach of
organizing points along a space-filling curve, added further details
about the algorithms developed, discussed the final sorted states,
and provided experimental measures for the adequacy of a given
input point set. We also added a brief overview of comparable and
consistent results when doing spatial sorting in 3D. Sample source
code for algorithms and testing setups are publicly available.1

In Section 2 we review related work and in Section 3 we for-
malize the concept of spatial sorting, detailing several novel algo-
rithms. In Section 4, we describe how to use spatial sorting as the
basis for a dynamic NNS data structure. Afterward, in Section 5,
we evaluate the performance and precision achieved in many sce-
narios. In Section 6, we summarize some best practices, providing
guidance for the use of the proposed techniques. Finally, in Section
7 we present the conclusion and discuss future work.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2016.03.006
0097-8493/& 2016 Elsevier Ltd. All rights reserved.

1 http://github.com/mgmalheiros/spatial-sorting

Please cite this article as: Malheiros MdG, Walter M. Spatial sorting: An efficient strategy for approximate nearest neighbor searching.
Comput Graph (2016), http://dx.doi.org/10.1016/j.cag.2016.03.006i

Computers & Graphics ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2016.03.006
http://dx.doi.org/10.1016/j.cag.2016.03.006
http://dx.doi.org/10.1016/j.cag.2016.03.006
http://www.github.com/mgmalheiros/spatial-sorting
http://dx.doi.org/10.1016/j.cag.2016.03.006
http://dx.doi.org/10.1016/j.cag.2016.03.006
http://dx.doi.org/10.1016/j.cag.2016.03.006
http://dx.doi.org/10.1016/j.cag.2016.03.006


2. Related work

Approximate nearest neighbor search (ANNS) approaches were
developed as an alternative to exact Voronoi diagrams. Of parti-
cular interest is the work of Har-Peled [13], which proposes a
space decomposition that approximates a Voronoi diagram and
has near-linear size. Therefore, it is possible to have a trade-off
between accuracy and complexity. Rong and Tan [14] present the
Jump Flooding algorithm, which employs the GPU to construct an
approximate Voronoi diagram in parallel. That said, we have
observed that most literature employs exact NNS methods, and
thus we will compare our results to such techniques.

Li and Mukundan [1] presented a review on spatial partitioning
methods with the focus on 2D crowd simulations, evaluating four
data structures: grid, quadtree, k-d tree, and Bounding Interval
Hierarchy (BIH). They run their implementations of these structures
on crowd simulation scenarios with a growing number of agents, up
to 10,000. In their experiments, the grid performed better than the
other three techniques. The paper does not mention details about the
hardware used, and it is then hard to compare their results.

Considering that crowd simulations are heavy users of neigh-
boring information, researchers have been investigating alter-
native partitioning methods. Vigueras and colleagues [15], for
instance, explored irregularly shaped regions as a partitioning
strategy in a distributed architecture. They compared the perfor-
mance of such regions against R-trees [16] and against a solution
using heuristics to define the rectangular partitioning. Their
results showed that the convex hull regions provided better per-
formance than the other two methods.

Recent k-d tree implementations make advances in GPU
acceleration, overcoming limitations due to conditional computa-
tions and suboptimal memory accesses. Gieseke et al. [17] describe
a buffered approach, organizing queries by spatial locality, which
are then run in the same GPU core. Kofler et al. [18] use a spe-
cialized k-d tree to compute n-body simulations, built inside the
GPU memory in distinct phases, by first creating nodes for large
groups of particles, which are then refined.

Fluid simulations using Smoothed Particle Hydrodynamics
(SPH) methods are also dependent on k-NN, being typically per-
formed on uniform grids. Green [19] presents a parallel 1D sorting
technique to group particles according to index similarity so that
nearby particles are indexed closely, which is the base for further
improvements presented by Ihmsen et al. [20], analyzing both
spatial hashing and index sort.

In Kim et al. [21], the grouping of subgrid structures enables the
division of work between several CPUs and GPUs, enabling the
simulation of millions of particles, while overcoming a limited GPU
memory space of a single GPU. Another interesting approach,
somewhat similar to what is described in this paper, Connor and
Kumar [22] sort the points along a unidimensional sequence, fol-
lowing a Z-order, and place them in a matrix. After that the k
neighbors of a point are found by performing another local sort of
Oðk log kÞ complexity.

Gast et al. [23] note that while NNS algorithms are efficient for
low dimensions, like the present case, for a large number of
dimensions even specialized algorithms can give only a minor
performance gain over sequential search.

Although quite efficient, these solutions still have shortcomings
from our point of view, such as high memory overhead caused by
the auxiliary data structures. Furthermore, as the set of cells from
our biological simulation is continually changing, we must update
the data structure dynamically. Thus, it is undesirable to recon-
struct it at each time step. As a final demand, we also sought for an
approach that is simple to parallelize on current GPUs.

The neighborhood grid was proposed by Joselli et al. [11], fol-
lowing early work in 2D [24] and 3D [25]. The main idea is to
organize points into a matrix or tridimensional array, to accelerate
the location of nearest neighbors. However, it should be noted that
the approach previously described does not try to achieve a fully
sorted state. Instead, only partial sorting is performed at each
simulation step, mostly because of performance concerns, leading
to low precision when locating nearest neighbors. In this paper, we
explore ways to efficiently keep the point set always fully sorted,
which significantly improves the accuracy and the usefulness of
this technique.

3. Spatial sorting

Although sorting is a classic topic in Computer Science, it is
almost always devoted to a single sequence of elements, that is, a
unidimensional list of comparable items. For clarity, we will call
this 1D sorting. For example, we can locate the k¼2 nearest
neighbors for each real number of an array by performing two
operations. First, we just sort the numbers in ascending order.
Then, we can locate the nearest neighbors for a given array ele-
ment i by just examining the elements with indices i�2, i�1, iþ1,
and iþ2, as shown in Fig. 2. Naturally, we need to adjust the
search when dealing with elements near the array ends.

The term spatial sorting is sometimes used to name the process
of ordering d-dimensional points along a space-filling curve so
that the result is still a unidimensional sequence. We may thus call
it 1D sorting along a curve. The more common schemes are using
either the Hilbert curve or the Morton order curve (also known as
Z-order) to establish a space traversal, where points are placed
into discrete bins, which are then ordered when the curve is fol-
lowed. Fig. 3 depicts both the Hilbert and Morton orderings for the
same set of points.

Therefore, the same approach as in the previous unidimensional
case can be performed: sort the points along a chosen curve, which
gives a sequence of points that can be placed into an array, and then
for each array element evaluate a few previous and following ele-
ments. Even though some spatial locality is achieved for nearby
points along such ordered sequences, there can be many dis-
continuities between bins as inevitably the ordering curve will need
to make turns to cover the bidimensional space. Such discontinuities

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Fig. 1. Close-up detail of a biological cell simulation.

Fig. 2. Finding nearest neighbors: unsorted sequence (top), sorted array (middle),
and searched elements (bottom). The query point is outlined in red, the candidates
are in blue, and the two nearest neighbors are marked in yellow. (For interpretation
of the references to color in this figure caption, the reader is referred to the web
version of this paper.) Q4

M.d.G. Malheiros, M. Walter / Computers & Graphics ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: Malheiros MdG, Walter M. Spatial sorting: An efficient strategy for approximate nearest neighbor searching.
Comput Graph (2016), http://dx.doi.org/10.1016/j.cag.2016.03.006i

http://dx.doi.org/10.1016/j.cag.2016.03.006
http://dx.doi.org/10.1016/j.cag.2016.03.006
http://dx.doi.org/10.1016/j.cag.2016.03.006


Download English Version:

https://daneshyari.com/en/article/6877013

Download Persian Version:

https://daneshyari.com/article/6877013

Daneshyari.com

https://daneshyari.com/en/article/6877013
https://daneshyari.com/article/6877013
https://daneshyari.com

