
Technical Section

Depth of field synthesis from sparse views$

Xin Liu, Jon G. Rokne n

Department of Computer Science, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

a r t i c l e i n f o

Article history:
Received 13 August 2015
Received in revised form
7 October 2015
Accepted 26 October 2015
Available online 19 November 2015

Keywords:
Image synthesis
Depth of field
Sparse view
Visibility

a b s t r a c t

Computer generated images are most easily generated as pinhole images whereas images obtained with
optical lenses exhibit a Depth-of-Field (DOF) effect. This is due to the fact that optical lenses gather light
across finite apertures whereas the simulation of a pinhole lens means that the light is gathered through
an infinitesimal small aperture, thus producing sharp images at any depth. Simulating the physical
process of gathering light across a finite aperture can be done for example with distributed ray tracing,
but it is computationally much more expensive than the simulation through an infinitesimal aperture.
The usual way of simulating lens effects is therefore to produce a pinhole image and then post processes
the image to approximate the DOF. Post processing algorithms are fast but suffer from incorrect visibi-
lities. In this paper, we propose a novel algorithm that tackles the visibility issue with a sparse set of
views rendered through the optical center of the lens and several peripheral viewpoints distributed on
the lens. All peripheral images are warped towards the central view to create a Layered-Depth-Image
(LDI), so that all observed 3D points located on the same central view-ray are stacked on the same pixel
of the LDI. Then, each pixel in the LDI is conceptually scattered into a Point-Spread-Function (PSF) and
blended in depth order. While the scatter method is very inefficient on a GPU, we propose a selective-
gather method for DOF synthesis, which scans the neighborhood of a pixel and blends the colors from
the PSFs covering the pixel. Experiments show that the proposed algorithm can synthesize high-quality
DOF effects close to the results of distributed ray tracing but at a much higher speed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An optical lens collects light across a finite aperture and pro-
duces images with Depth-of-Field (DOF), a phenomenon that
results in in-focus objects being sharply imaged and out-of-focus
objects are blurred to different degrees. The DOF effect plays a
crucial role in an image's photorealism and depth feeling [35], and
it is widely used in cinematography to guide the audiences'
attention and to create a special artistic atmosphere. It is thus
important to simulate DOF effects when there is a requirement for
photorealism in computer graphics.

A DOF simulation system for computer graphics is logically
composed of a 3D renderer and an image processor. We classify
existing algorithms according to the combination of the two
components. High quality DOF effects can be synthesized by object
space algorithms [2], which faithfully simulate the physical imaging
process of an optical lens. However, those algorithms are very
costly in terms of computing time. Therefore, a number of post-
processing algorithms [3] has been devised to synthesize DOF

effects from a pinhole image rendered through the lens' optical
center. The post-processing algorithms are generally fast, but the
quality of synthesized images is limited due to annoying artifacts.
These artifacts are especially conspicuous when an in-focus object
is partially occluded by a foreground object. The fundamental
reason is that the pinhole image only covers a subset of an optical
lens's visibility, and the visibility missing from the pinhole image
cannot be recovered by image processing in 2D space. The term
visibility is used in this paper to denote the set of points in a 3D
scene that participates in the formation of a 2D image.

In this paper, we propose a novel algorithm that tackles the
visibility issue by using a sparse set of views which are rendered
through the optical center of the lens and a some peripheral points
distributed on the perimeter of the simulated lens. The sparse
views essentially quantize the continuous light field [31] across the
aperture of the lens. To remove the disparity between the con-
tinuous distribution over the simulated lens and the discrete
points on the lens we scatter pixels at the correct locations and
warp all peripheral views towards the central view. By this we
create a Layered-Depth-Image (LDI) [47], so that all 3D points
located on the same central view-ray are stacked on the same
pixel of the LDI. To save memory space and processing time, the
depth-pixels at each discrete location of the LDI are clustered into
a fixed number of layers according to their perceptive depths. Then,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2015.10.015
0097-8493/& 2015 Elsevier Ltd. All rights reserved.

☆This article was recommended for publication by Y. Gingold.
n Corresponding author.
E-mail addresses: xinliu@live.ca (X. Liu), rokne@ucalgary.ca (J.G. Rokne).

Computers & Graphics 55 (2016) 21–32

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2015.10.015
http://dx.doi.org/10.1016/j.cag.2015.10.015
http://dx.doi.org/10.1016/j.cag.2015.10.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.10.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.10.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.10.015&domain=pdf
mailto:xinliu@live.ca
mailto:rokne@ucalgary.ca
http://dx.doi.org/10.1016/j.cag.2015.10.015


each pixel of the LDI is conceptually scattered into a Point-Spread-
Function (PSF) and blended in depth order. While the scatter
method is very inefficient on a GPU due to severe write-conflicts,
we propose a selective-gather method for DOF synthesis, which
scans the neighborhood of a pixel and blends the colors from the
PSFs covering the pixel. To further speed up image synthesis, the
PSFs are clustered into a fixed number of layers at each destination
pixel according to the perceptive depths.

The proposed algorithm works equally well with both ray tra-
cing and rasterization rendering algorithms. The peripheral views
cover the lens' visibility missing from the central view to a satis-
factory extent, which is important for high-quality DOF synthesis.
They do not introduce extra vision not belonging to the lens, which
would otherwise cause very objectionable see-through artifacts in
the synthesized image.

Experiments show that with 5–9 views the proposed algorithm
can render high quality DOF images close to the results of dis-
tributed ray tracing, but at a much higher speed.

The contributions of this paper are:

1. a new taxonomy of DOF synthesis algorithms according to the
combination of 3D renderer and image processor,

2. a novel DOF synthesis strategy combining a multi-view renderer
and a scatter image processor,

3. a GPU friendly algorithm for image warping and LDI creation, and
4. a GPU friendly selective-gather algorithm for DOF synthesis.

2. Literature review

DOF simulation has been intensively studied since 1980s. Barsky
et al. [2,3,6] and Demers [13] made comprehensive surveys of this
research field. From our viewpoint, every DOF simulation algorithm
is logically composed of two components, i.e., a 3D renderer and an
image processor, and can be reasonably classified according to the
combination of the two components. In this section we review
some representative algorithms falling into each class, and thereby
clarify the distinct features of the proposed algorithm.

2.1. 3D renderer

Each DOF simulation algorithm employs a 3D renderer to
compute the light captured by a lens in a 3D scene. The 3D ren-
derer provides the raw data for the image processor. According to
their output, the 3D renderers can be classified into (1) multi-view
(MTVW), (2) single-view-single-layer (SVSL), and (3) single-view-
multi-layer (SVML) renderers.

A multi-view (MTVW) renderer [11,17] computes a set of the
light samples across the lens which are hitting the image sensor
(film). This constitutes a lens light field, as shown in Fig. 1(a). When
the sampling is dense enough, the output can be used to synthesize
physically correct DOF effects but at a very high computational cost.

A single-view-single-layer (SVSL) renderer computes a set of the
light samples through the optical center of the lens which hit the
image sensor (film) forming a pinhole image, as shown in Fig. 1(b).
The pinhole image covers only a subset of the visibility of the lens.
This means that some objects that are visible through a lens, as
exemplified by the blue rectangle, are invisible through the optical
center of the lens. The missing visibility cannot be recovered by
any image processor and will cause unavoidable artifacts in the
synthesized DOF image.

To address the visibility issue while keeping the computational
cost fairly low, the single-view-multi-layer (SVML) renderer has been
exploited, which captures a multi-layer pinhole image through the
optical center of the lens. The SVML renderer can be implemented
by either scene stratification [28,32], which stratifies the scene with
parallel planes, as shown in Fig. 1(c), or depth peeling [30,29,14,33],
which repeatedly peels off the exposed surfaces. The SVML renderer
has some inherent drawbacks. First, decomposing a 3D scene
destroys its structure and exposes objects invisible through the lens,
as exemplified by the red disk in Fig. 1(c). The image processor
cannot correctly solve the visibility in 2D space and may further
expose the hidden objects in the synthesized image, causing the
very objectionable see-through artifacts. Second, the surfaces par-
allel to the view-rays are missed out, as exemplified by the lateral
edges of the green pentagon in Fig. 1(c).

2.2. Image processor

An image processor can be used to synthesize a DOF image
from the raw data provided by the 3D renderer. Image processors

Fig. 1. Three types of 3D renderers: (a) multi-view, (b) single-view-single-layer, and (c) single-view-multi-layer. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

X. Liu, J.G. Rokne / Computers & Graphics 55 (2016) 21–3222



Download English Version:

https://daneshyari.com/en/article/6877040

Download Persian Version:

https://daneshyari.com/article/6877040

Daneshyari.com

https://daneshyari.com/en/article/6877040
https://daneshyari.com/article/6877040
https://daneshyari.com

