
Technical Section

Extracting flow features via supervised streamline segmentation

Yifei Li a,n,1, Chaoli Wang c,3, Ching-Kuang Shene b,2

a Department of Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, United States
b 305 Rehki CS Hall, Department of Computer Science, Michigan Technological University, 1400 Townsend Drive Houghton, MI 49931, United States
c 384 Fitzpatrick Hall, Department of Computer Science & Engineering, University of Notre Dame Notre Dame, IN 46530, United States

a r t i c l e i n f o

Article history:
Received 22 January 2015
Received in revised form
9 June 2015
Accepted 9 June 2015
Available online 26 June 2015

Keywords:
Flow visualization
Flow feature extraction
Streamline segmentation
Support vector machine

a b s t r a c t

Effective flow feature extraction enables users to explore complex flow fields by reducing visual clutter.
Existing methods usually use streamline segmentation as a preprocessing step for feature extraction. In
our work, features are directly extracted as a result of streamline segmentation. In order to achieve this,
we first ask users to specify desired features by manually segmenting a few streamlines from a flow field.
Users only need to pick the segmentation points (i.e., positive examples) along a streamline, remaining
points will be used as negative examples. Next we compute multiscale features for each positive/
negative example and feed them into a binary support vector machine (SVM) trainer. The trained
classifier is then used to segment all the streamlines in a flow field. Finally, the segments are clustered
based on their shape similarities. Our experiment shows that very good segmentation results can be
obtained with only a small number of streamlines to be segmented by users for each data set. We also
propose a novel heuristic based on the minimum bounding ellipsoid volume to help determine where to
segment a streamline.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Flow visualization has been a central topic in scientific visua-
lization for more than two decades. A flow field can be visualized
using different techniques, including glyph-based [1], texture-
based [2], integration-based [3], partition-based [4], illustration-
based [5], and surface-based [6] approaches. Among these tech-
niques, integration-based flow visualization is most widely used in
practice. For integration-based flow visualization, particles or
seeds are placed in a vector field and advected over time. The
traces or field lines that the particles follow, i.e., streamlines for
steady flow and pathlines for unsteady flow, depict the underlying
vector data. In this paper, integration-based technique with ran-
dom seeding is used for visualization.

However, visual clutter and occlusion is a major issue when
hundreds or thousands of streamlines are rendered to depict a
flow field. This makes it difficult for users to explore the interest-
ing features. Although clustering and displaying the streamlines
based on their similarities may alleviate this issue, a more subtle

issue is that very often not all parts of a streamline are equally
important: the part of a streamline in the vicinity of a vortex is
more important than the part running through a region of laminar
flow. Furthermore, different domain experts may have their own
criteria on what constitutes an “interesting flow feature”. This
observation inspired us to segment a streamline based on user-
defined features. To the best of our knowledge, this problem has
not been well studied by the flow visualization community.

To address this problem, we propose a supervised streamline
segmentation algorithm which allows the extraction of user-
defined flow features. For each data set, users are required to
manually segment only a small number of streamlines in order to
define what flow features they want to extract from the flow field.
The user-picked segmentation points along a streamline will be
used to generate positive training examples, whereas the remain-
ing ones are used to generate negative training examples. Multi-
scale feature vectors are computed for each positive and negative
example, and fed into a binary support vector machine (SVM)
trainer. Finally, we use the trained classifier to determine the
segmentation points for all the streamlines in the data set. A post-
processing step is required for grouping nearby segmentation
points detected by the classifier. Fig. 1 shows an example of
extracting user-defined partial flow features.

The remainder of this paper is structured as follows. Section 2
reviews approaches that are most related to our work. Section 3
presents the details of our algorithm and is divided into the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

http://dx.doi.org/10.1016/j.cag.2015.06.003
0097-8493/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: yifli@mtu.edu (Y. Li), chaoli.wang@nd.edu (C. Wang),

shene@mtu.edu (C.-K. Shene).
1 Tel.: þ1 906 487 2209; fax: þ1 906 487 2283.
2 Tel.: þ1 906 487 3392; fax: þ1 906 487 2283.
3 Tel.: þ1 5746319212; fax: þ1 5746319260.

Computers & Graphics 52 (2015) 79–92

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2015.06.003
http://dx.doi.org/10.1016/j.cag.2015.06.003
http://dx.doi.org/10.1016/j.cag.2015.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.06.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.06.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.06.003&domain=pdf
mailto:yifli@mtu.edu
mailto:chaoli.wang@nd.edu
mailto:shene@mtu.edu
http://dx.doi.org/10.1016/j.cag.2015.06.003


following subsections: Section 3.1 introduces basic concepts of
supervised learning and SVM, Section 3.2 discusses the features
we use to train a classifier, Section 3.3 explains how the positive
and negative examples are generated, Section 3.4 explains how the
training is conducted, and Section 3.5 introduces our segmenta-
tion algorithm and necessary post-processing steps. Section 4
demonstrates the utility of our algorithm by clustering streamline
segments using different 3D flow fields. Section 5 compares our
method with a few other state-of-the-art streamline segmenta-
tion/feature extraction methods. Finally, Section 6 points out the
directions of our future work.

2. Related work

Flow feature extraction provides an effective way to reduce
visual clutter. For 2D flows, Schlemmer et al. [7] and Bujack et al.
[8] both leveraged moment invariants to detect 2D flow features.
Wei et al. [9] relied on user-sketched 2D curves to retrieve similar
occurrences from a 3D flow field. The retrieval might be ambig-
uous because the 3D streamlines first need to be projected to 2D
curves for similarity comparison. Tao et al. [10] converted each
streamline into a string such that all the streamlines can be
recorded in a suffix tree. The string patterns detected in the suffix
tree correspond to certain flow features. Users can specify a query
string to search for interesting flow features. Finally, Wang et al.
[11] proposed an example-based flow pattern search approach for
the detection of similar flow feature patterns given a query
pattern, where flow patterns are given by a subset of segments
from the set of all streamline segments.

Streamline clustering and selection provides another way to
reduce visual clutter. Common clustering algorithms such as
nearest neighbor, fuzzy clustering and hierarchical clustering have
been used in the works of [12–14]. Different streamline similarity
measures have been proposed for streamline clustering. Examples
include the average of point-by-point distance [13], the mean of
closest point distances [15] and the thresholded average distance
[12]. These similarity measures are all based on the Euclidean
distance, and hence are not affine invariant. To overcome this
shortcoming, similarity measures based on feature distribution
were adopted in the works of [16–18]. For a detailed survey of
streamline clustering methods and similarity metrics, we refer
readers to [19]. Günther et al. [20] rendered streamlines using
different opacity values which are computed to optimize the
balance between information presentation and occlusion avoid-
ance. They also gave a comparison among the different state-of-
the-art streamline selection algorithms.

Streamline segmentation has been used to facilitate streamline
similarity comparison [17] and flow pattern extraction [10,11]. Lu

et al. [17] recursively segmented a streamline into two most
dissimilar segments until either the dissimilarity is below a certain
threshold or the current segment is too short. Tao et al. [10]
segmented a streamline such that the accumulated curvature of
each segment does not exceed a certain threshold. An obvious
drawback of their approach is that they failed to separate straight
segments. Wang et al. [11] partitioned a streamline into so-called
minimal segments first, and the final segmentation is obtained
after merging the minimal segments based on two thresholds:
total curvature and average binormal direction. However, their
approach cannot segment turbulent streamlines very well. All of
these segmentation algorithms need some manually tuned thresh-
olds to determine whether to segment or not at a given point.

The problem of curve segmentation has also been studied in
the computer vision community. However, they usually focused on
segmenting a curve into a combination of representations such as
lines, circular, elliptical and superelliptical arcs, and polynomials
[21]. We cannot apply their methods to streamline segmentation
because we are usually interested in more complicated features
such as spirals rather than just, for example, circular curves.

The minima rule [22] from cognitive science is widely used by
mesh segmentation algorithms [23]. The rule states that human
beings tend to divide a surface into parts at loci of negative minima
of each principal curvature along its associated family of lines of
curvature. However, after extensive research, we have not found
any rules from cognitive science which can help us segment a 3D
curve (e.g., streamlines).

3. Supervised streamline segmentation

In order to obtain a streamline segmentation based on user-
defined features, we leverage supervised learning to train a
classifier to determine whether we should separate a streamline
around a given point. The motivation for using machine learning is
that we want to take multiple features into consideration when
determining whether to segment and generate a complex decision
function based on those features.

Therefore, we propose a user-guided streamline segmentation
framework, which is illustrated in Fig. 2. After streamlines are
traced, we cluster (Section 3.3.1) and simplify (Section 3.3.2) all
the streamlines. From cluster representatives, users choose which
streamlines to segment manually. A binary SVM classifier (Section
3.1) is trained (Section 3.4) to classify segmentation points of a
streamline. A post-processing step (Section 3.5) is carried out to
generate final segmentation. The training process (the dashed line
in Fig. 2) can be repeated if users are not satisfied with the
segmentation results.

Fig. 1. Given an input pool of streamlines (left), we first segment each streamline using our previously learned classifier for segmentation points (middle, the red point is the
segmentation point found by our algorithm). Partial streamline features specified by users will be clustered based on their similarities (right). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Y. Li et al. / Computers & Graphics 52 (2015) 79–9280



Download	English	Version:

https://daneshyari.com/en/article/6877146

Download	Persian	Version:

https://daneshyari.com/article/6877146

Daneshyari.com

https://daneshyari.com/en/article/6877146
https://daneshyari.com/article/6877146
https://daneshyari.com/

