Computers & Graphics 44 (2014) 33-44

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

OMPUTER
&GRAPHICS

Technical Section

Stateless generation of distributed virtual worlds

Jiri Danihelka*, Lukas Kencl , Jiri Zara

Czech Technical University in Prague, Faculty of Electrical Engineering, Czech Republic

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 11 February 2014
Received in revised form

11 July 2014

Accepted 11 July 2014
Available online 30 July 2014

Keywords:

Graph algorithms

Path problems
Distributed graphics
Computational geometry
Urban modeling

We present novel techniques for implementing possibly infinite on-demand generated 3D virtual worlds
in distributed environments. Our approach can be useful in two scenarios: 1. A multiuser virtual world
with mobile clients with sufficient CPU and GPU power but with limited network speed. This reflects
current mobile phones, tablets and laptops in areas without a high-speed mobile connection or Wi-Fi
connectivity. 2. Virtual world on-demand generation in a cloud environment that would be useful for
scalable massive multiplayer games. If multiple independent generators create areas that are over-
lapping, our method ensures that the intersection of the areas will contain the same geometry for all of
them. For this reason, we call our method stateless generation.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Much attention is currently focused on multi-user virtual envir-
onments hosted in the cloud for both gaming and non-gaming
purposes [1-3]. With the arrival of massive multiplayer online
games, game creators have had to deal with limited server capacity
in terms of world size or number of players [4], but virtual-world
services must be scalable [5]. Current cloud computing technologies
are able to provide additional resources on-demand, but virtual-
world systems are rarely able to generate on-demand game content
(to save memory for world parts not needed at the moment).
Another problem is the limited network connectivity of mobile
clients in cellular networks, which is often too slow for downloading
the content generated on the server, thus having a highly negative
impact on the emerging and ubiquitous mobile gaming.

Our method is innovative in that it eliminates the need to
synchronize the static content that was procedurally generated on
multiple devices. This will allow virtual-world servers to dedicate
additional machines from the cloud environment to parallel
content generation, or even to generate content on client devices.
Because the content is generated on-demand, the virtual world
can be considered theoretically infinite.

We refer to our method as stateless generation because it allows for
locally generating only the content of the world that is relevant to the
viewing frustum of the clients, and this content is generated inde-
pendently, without knowledge of the states of the other generators.

* Corresponding author.
E-mail addresses: danihjir@fel.cvut.cz (J. Danihelka), kencl@fel.cvut.cz (L. Kencl),
zara@fel.cvut.cz (J. Zara).

http://dx.doi.org/10.1016/j.cag.2014.07.002
0097-8493/© 2014 Elsevier Ltd. All rights reserved.

As one of the most difficult virtual environments to generate,
our efforts focus on generating an urban landscape (see Fig. 1). City
environments are generally complex because they are structured
and are both detailed and enormous. Procedural generation is a
convenient tool for saving storage space and/or Internet band-
width. When in the view frustum, buildings can be created on-
demand from their lots (land parcels) using generating grammars.

Moreover, our method is general enough to be applicable to
other types of structured landscapes (e.g., countryside, caves,
labyrinths). Structured landscapes are generally more difficult to
generate than unstructured landscapes (e.g., forests).

We provide a general purpose guideline for scalable algorithms
generating virtual worlds that is applicable to most types of
landscapes. We formalize the requirements and constraints such
algorithms must fulfill. We then provide a novel algorithm for
generating an infinite and scalable city-street layout, including a
novel sub-algorithm for generating streets in a constrained envir-
onment, which could also be useful in traditional approaches to
procedural city generation [6].

2. Related work

The most advanced approach for procedural building genera-
tion was published by Miiller et al. [7] in 2006, improving upon
the previous method by Wonka et al. [8] in 2003. The lot and
street geometry can also be generated procedurally. The first such
algorithm for finite cities was published by Parish and Miiller [9].

In 2003, Geuter et al. [10,11] presented an algorithm for the on-
demand generation of infinite cities in a regular rectangular grid.


www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2014.07.002
http://dx.doi.org/10.1016/j.cag.2014.07.002
http://dx.doi.org/10.1016/j.cag.2014.07.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.07.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.07.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2014.07.002&domain=pdf
mailto:danihjir@fel.cvut.cz
mailto:kencl@fel.cvut.cz
mailto:zara@fel.cvut.cz
http://dx.doi.org/10.1016/j.cag.2014.07.002

34 J. Danihelka et al. /| Computers & Graphics 44 (2014) 33-44

Fig. 2. Previous approach in infinite-city rendering published by Greuter et al.
[10,11] showing street level view. Note the regular rectangular shape of the street
network.

In their approach, the street network has to be aligned with the
main axis, and all building lots must have the same square shape
and size (see Fig. 2). The visible buildings are determined and
procedurally generated according to the viewing frustum. Each
building lot is assigned an integer number according to its
coordinates using a hash function. This number is used as another
seed for the pseudo-random building generation of that building
lot. Some of these ideas are applied and extended in our approach.

A method for real-time generation of detailed procedural cities
from GIS data was published by Cullen and O'Sullivan [12]. Their
system uses a client-server approach, allowing multiple clients to
generate any part of the city without requiring the full data-set.
It creates the building geometry on-demand from the provided lot
database and, in contrast to our work, does not address street and lot
generation. Vanegas et al. [13] presented an interactive method for
procedural generation of city parcels. They generate spatial config-
urations of parcels similar to real-world cities and support consistent
lot locations relative to their containing blocks. Their approach
generates parcels highly similar to those observed in real-word cities,
but it mainly focuses on parcel layout and does not address all the
phases of the city-generation process, unlike our method.

Aliaga et al. [14] presented a system for synthesizing urban
landscapes by example. They proposed a random walk algorithm
for obtaining parameters from existing cities that are later used in
the generation process. Their system was somewhat capable of on-
demand generation, but it was neither intended nor suitable for
distributed environments because it required knowledge of all
previously generated geometries for each future step.

On-demand world generation is highly related to texture
synthesis algorithms. The main difference between these two
approaches is the use of the generated results and whether the
algorithm generates vector or raster output. Algorithms for texture

synthesis usually use Voronoi diagrams [15] of randomly distrib-
uted points. One of the pioneering works in this area was
published by Worley [16], who uses a function that complements
Perlin fractal noise to produce textured surfaces resembling
flagstone-like tiled areas, an organic crusty skin, crumpled paper,
ice, rock, mountain ranges, and craters. Our algorithms are
inspired by his function to determine the nth-closest points that
affect the structure of the texture at the currently generated area.
We aim for a similar goal, but we use Delaunay triangulation
instead. We also use techniques based on Voronoi diagrams to
divide areas that are affected by different geometrical elements.

Liang et al. [17] presented another algorithm for synthesizing
textures from an input sample in real-time, but they use a significantly
different approach than ours and their results are not isotropic, which
is important for stateless generation. Texture synthesis can also be
used to generate street patterns, [18,19] but these works use different
approaches that are difficult to adjust for the purposes of infinite cities.
Lefebvre and Hoppe [20] presented an algorithm for parallel on-
demand texture synthesis based on a neighborhood matching
approach. Their scheme defines an infinite, deterministic, aperiodic
texture from which rectangular views can be computed in real-time
on a GPU. Another advance in infinite texture generation was made by
Cohen et al. [21]. They utilized a small set of Wang Tiles to tile a plane
non-periodically. Using a proper tile set, the texture can be extended
on-demand. In 2007, Merrell [22] presented an algorithm for generat-
ing 3D buildings and cities from a set of 3D tiles. Merrell's later work
[23] was focused on continuous city model synthesis. These techni-
ques are, however, limited to structures aligned with the main axes.

To generate a realistic world structure, we must first analyze
examples to acquire characteristics that are later used in procedural
modeling. Important progress in inverse procedural modeling was
made by Stava et al. [24]. They create parametric context-free
L-systems that represent an input 2D model. Their approach is based
on vector shape recognition, clustering in the transformation spaces
and detecting structures as L-system rules. Elements and structures
can be edited by changing the L-system parameters.

Our approach follows up on the above works, combining their
benefits and removing some of their limitations. Unlike
[10,11,22,23], our building lots can have various sizes and shapes,
streets can be arbitrarily oriented, and the street network is not
periodic. Unlike [14], our approach adds capabilities for distributed
environments as well as the ability to generate only content
related to the view frustum of the client.

3. Stateless generation approach

We have laid down the following general requirements for our
world generator:

1. The generated world is infinite and is not periodic.

2. Clients and/or servers are able to generate the static part of the
world on-demand; they do not have to download it from a
single (common) place. They should download only one ran-
dom generator seed (or hash function) for the whole world.

3. Generation of the world can start from any point. The client
will generate only those parts that are relevant (e.g., visible)
to it.

4. The generation process is deterministic (usually achieved using
pseudo-random generators). The results are always identical,
regardless of the starting point or the area relevant to the
client.

If a generator fulfills the above requirements, we call it a
stateless generator. This is because its results do not depend on
the results (or inner states) of other generators working in parallel



Download English Version:

https://daneshyari.com/en/article/6877193

Download Persian Version:

https://daneshyari.com/article/6877193

Daneshyari.com


https://daneshyari.com/en/article/6877193
https://daneshyari.com/article/6877193
https://daneshyari.com

