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A B S T R A C T

Shape dissimilarity is a fundamental problem with many applications such as shape exploration, retrieval, and
classification. Given a collection of shapes, existing methods develop a consistent global metric to compare and
organize shapes. The global nature of the involved shape descriptors implies that overall shape appearance is
compared. These methods work well to distinguish shapes from different categories, but often fail for fine-
grained classes within the same category. In this paper, we develop a dissimilarity metric for fine-grained classes
by fusing together multiple distinctive metrics for different classes. The fused metric measures the dissimilarities
among inter-class shapes by observing their unique traits. We demonstrate the advantage of using our approach
in several applications.

1. Introduction

Shape dissimilarity is one of the most fundamental problems in
computer graphics and various other fields, with numerous applications
such as shape exploration, retrieval and classification [37]. Recent
advances in shape analysis call for the development of semantic-aware
metrics and fine-grained dissimilarity measures [18,24].

Many shape dissimilarity methods compare instances based on
global shape descriptors [3,7,26,32], which encode and capture overall
shape geometry. These global descriptors are designed for high-level
classification and are generally insensitive to fine-grained dissim-
ilarities. Other methods [12,18,25,28] deliberately emphasize fine-
grained distinction, but they are class-oblivious in that they apply the
same measure to all classes without taking into account the possibly
unique characteristics of each particular class.

The premise of this work is that different classes share different
commonalities (e.g., parts, geometric features, etc.), and hence require
different fine-grained dissimilarity measures to better capture their fine
differences. Therefore, the dissimilarity measures employed for inter-
class and intra-classes distinctions should be tailored according to the
observed commonalities within the various classes. Our key idea is
therefore to compose an inter-class dissimilarity metric based on
common class characteristics, and fuse multiple fine-grained metrics
together into one general dissimilarity metric. This metric then garners
the unique properties of the individual metrics, and is able to perform
high-level differentiation of inter-class shapes.

The rest of the paper is organized as follows. Section 2 contains an
overview of previous related works on the subject of shape dissim-
ilarity. Our approach is presented in detail in Section 3, which starts
with a short method overview, and continues to discuss our chosen
shape representation, class-specific metric and metric fusion. Results
and comparisons are shown in Section 4 and we conclude in Section 5.

2. Related works

Shape dissimilarity is a central problem in computer graphics with
many applications and therefore a rich body of previous work. A
common thread connecting the majority of these works is the reliance
on shape descriptors that are designed and computed to capture im-
portant characteristics of the shapes such that they are conveniently
comparable to one another [37]. Some shape descriptors are composed
of geometric features or signatures [16,17,31]. For instance, the light
field descriptor (LFD) [10,29] aggregates features from multi-view
images to represent a shape. The scale-invariant heat kernel signature
(SI-HKS) [8] extracts local and global geometric properties of points on
the 3D shape. These feature descriptors put more focus on shape geo-
metry such that shape topology is somewhat overlooked. On the other
hand, a shape descriptor can also be computed from different shape
representations, such as graph representation [6,20] and skeleton re-
presentation [36], to preserve the topology or the connections between
shape components. Shape descriptors aim to represent and capture the
overall appearance of a shape, but often do not delve deeper into its
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semantic meaning.
With the expansion of readily available shape repositories con-

taining a wide variety of different types of shapes, attention and em-
phasis put on semantics as a tool for analysis has grown.
Correspondence between shapes and their parts is a strong cue for
shape dissimilarity that aligns with human intuition. Many methods
first employ a shape matching process to align shape parts and then
compute shape dissimilarity by summing up the differences between
part descriptors [5,30]. In this manner, Alhashim et al. [1] and Kleiman
and van Kaick [28] use the cost of deformation or editing operations
between corresponding parts to quantify dissimilarity, and Averkiou
et al. [2] use the parameters of oriented bounding boxes to represent
parts. Recently, following the success of deep learning methods applied
on various problems, high-level shape descriptors that are learned using
deep networks on collections of shapes [23,35,38,39], have been shown
to provide good performance for classification and retrieval, suggesting
that these learned features possess some notion of shape semantics.
However, it is not uncommon for shapes belonging to the same fine-
grained semantic class to agree on a subset of their attributes while,
often significantly, disagreeing on others. Thus, in cases such as these,
we conclude that global metrics learned at the category level cannot
easily be used to distinguish between fine-grained classes.

To address this issue, some works opt to analyze distinctive regions
of shapes [33,34], which are common among shapes of the same class
but uncommon for others, such that the intra-dissimilarity values are
small when the focus is on the distinctive regions. Kim et al. [27]
compare shapes based on regions of interest selected by users and Gao
et al. [18] refine the distinctive regions iteratively by requesting users
to select similar and dissimilar shapes. Huang et al. [24] extract the
distinctive regions for multiple fine-grained classes separately with a
semi-supervised metric learning method. These metrics can compare
shapes based on certain distinctive regions, but each metric can only
handle one class. As different fine-grained classes have different dis-
tinctive attributes, these methods fail to separate the classes using a
single metric. As demonstrated by Frome et al. [14] and Hong et al.
[22], an effective way to separate classes is by fusing multiple local
finer-scale metrics. Some works fuse multiple metrics by simply con-
catenating the anchors [15] and others by summing up the weighted
differences of each metric [40]. Since the weights are fixed for all
shapes, they are utilizing the information present in the category in its
entirety to define one global metric to compare all pairs of shapes. We
observe that certain metrics may not necessarily apply to all shapes,
thus using them collectively often carries little meaning.

Considering the highly non-linear nature of the local features of
fine-grained classes, employing deep learning methods to extract the
significant aspects of the features is a natural choice. Data-driven
methods often require large amounts of labeled data to support good
generalization over the learned space, such that meaningful deep fea-
tures can be extracted for the training data [4]. When the focus is put on
the division of a class into sub-categories, acquiring a large labeled
dataset is not straight-forward, since the fine-grained classes may
overlap with each other, and they are not well defined. For the purpose
of handling small labeled datasets, the Siamese network [11,21], has
been proposed, where the set is organized into positive and negative
pairs. Naturally, the training quality of the Siamese network highly
depends on the input pairs and the distinction between positive and
negative, a requirement which cannot necessarily be fulfilled when
fine-grained classes overlap.

In this paper, we develop a dissimilarity metric to separate multiple
fine-grained classes by fusing together several distinctive metrics.
Differently from existing methods, our metric uses a different fused
basis for each pair of shapes based on their relevant classes, rendering
our metric sensitive to fine-grained classes. The embedding generated
naturally by our fused dissimilarity metric shows its ability to recognize
fine-grained classes, and separate them physically. We show that our
dissimilarity metric demonstrates improved performance on shape

retrieval and classification applications.

3. Method

3.1. Overview

To develop a shape dissimilarity metric in order to distinguish be-
tween fine-grained classes, we ought to first form a notion of the classes
we are working with. A fine-grained class is a flexible and loose con-
cept, and is often a matter of semantics. This leads to a highly diverse
space of classes that is hard to define globally. For example, a class may
exhibit a common overall style, e.g., sofas, while another may favor
common local regions, e.g., swivel chairs. Thus, forming an idea of the
nature of our fine-grained classes from the input, is an essential first
step. Accordingly, the input to our problem consists of multiple small
reference sets representing fine-grained classes, such that a user is only
required to select a few representative shapes per class. Note that we do
not assume a complete labeling of the reference sets at all, for example,
a swivel sofa may appear in the swivel chair reference set, but not be
selected to appear in the sofa set, as shown in Fig. 1.

Given several small reference sets as input, we first learn a con-
sistent shape representation to capture the characteristics of our shapes.
Next, we leverage metric learning to develop a distinct metric for each
class, so that inter and intra class distinctions can be separated. Lastly,
we fuse the various learned metrics together by considering the metrics
for relevant classes for each pair of shapes. These steps are described in
detail below.

3.2. Shape representation

Finding the commonalities and differences between shapes ne-
cessitates a conveniently comparable representation. A plethora of
shape features have been designed and utilized by many for various
comparison-based tasks. Our approach is oblivious to the choice of
features, and only requires consistency among them.

Recently, deep autoencoders have been shown to be a powerful tool
for representation learning. An autoencoder is composed of an encoder
component followed by a decoder component, such that the purpose of
the encoder is to extract the most crucial information from the input
data and encode it to a representation that can be successfully re-
constructed back to the input, by the decoder component.

For our experiments, we opt to train a simple deep autoencoder for

Fig. 1. A reference set of swivel chairs. The shapes in this class exhibit large
variation in the backrest, seat and handles. The shapes circled in red belong to
both the swivel chair and bar chair classes. The shapes circled in blue belong to
both the swivel chair and sofa classes. However, the swivel sofas may not be
selected by a user to appear in the sofa reference set. Thus, we expect our input,
consisting of small labeled reference sets, to be far from complete. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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