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Protein-ligand scoring is an important step in a structure-based drug design pipeline. Selecting a correct
binding pose and predicting the binding affinity of a protein-ligand complex enables effective virtual
screening. Machine learning techniques can make use of the increasing amounts of structural data that
are becoming publicly available. Convolutional neural network (CNN) scoring functions in particular have
shown promise in pose selection and affinity prediction for protein-ligand complexes.

Neural networks are known for being difficult to interpret. Understanding the decisions of a particular
network can help tune parameters and training data to maximize performance. Visualization of neural
networks helps decompose complex scoring functions into pictures that are more easily parsed by
humans. Here we present three methods for visualizing how individual protein-ligand complexes are
interpreted by 3D convolutional neural networks. We also present a visualization of the convolutional
filters and their weights. We describe how the intuition provided by these visualizations aids in network
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design.
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1. Introduction

Protein-ligand scoring is an important computational method in
a drug design pipeline [1—6]. In structure-based drug design
methods, such as molecular docking, scoring is an essential sub-
routine that distinguishes between correct and incorrect binding
modes and ranks the probability that a candidate molecule is
active. Improved scoring methods will result in more effective
virtual screens that more accurately identify enriched subsets of
drug candidates, providing more opportunities for success in sub-
sequent stages of the drug discovery pipeline.

The wealth of protein-ligand structural and affinity data enables
the development of scoring functions based on machine learning
[7—14]. Of particular interest are methods that use convolutional
neural networks (CNNs) [15—21] to recognize potent protein-ligand
interactions, as CNNs have been remarkably successful at the
analogous image recognition problem [22—24]. Unlike force field or
empirical scoring functions, whose functional form is designed to
represent known physical interactions such as hydrogen bonding or
steric interactions, machine learning methods can derive both their
model structure and parameters directly from the data. However,
this increase in model expressiveness comes at the cost of reduced
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model interpretability.

The lack of interpretability of a CNN model presents challenges
both when developing a scoring function and in understanding its
application. Choosing input representations, managing training and
test data, and determining optimal parameters all depend on un-
derstanding how the CNN behaves. Simple “black box” treatment of
the model is not sufficient to guide such decisions. Additionally,
visualizations can provide human-interpretable insights to help
guide medicinal chemistry optimization.

In the image classification domain, there are a number of
methods that provide insight into the inner workings of a trained
CNN by projecting network decisions back on the readily visualized
input image. These methods reveal what parts of an input image are
important [25,26] and how the input is represented at different
layers in the network [27]. Loss gradients have also been used to
visualize what aspects of its input a model has learned to favor for
different predicted classes [28]. Here we investigate grid-based
CNN scoring of protein-ligand complexes and show how network
decisions can be projected back to an atomistic granularity.

We visualize the convolutional filters of the first layer of the
network to gain insight in the initial featurization learned. In order
to gain atomistic insight into specific network decisions (e.g., why a
ligand is scored as having a high/low affinity), we introduce and
compare three methods for projecting the network's decision onto
the molecular input: masking, gradient, and conserved layer-wise
relevance propagation (CLRP). CLRP is a novel refinement of
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layer-wise relevance propagation (LRP) [29,30] that better com-
pensates for zero-weight activations. This is important since such
activations emerge naturally from “empty” space in the input
where there are no protein or ligand atoms (e.g. implicit solvent).
This enables visualizations that account for the contributions of
solvent to the final prediction of the network.

We apply each method to a network that was trained for both
pose selection (distinguish low-RMSD from high-RMSD poses) and
affinity prediction. Convolutional filter visualization provides
insight into the low-level features identified by the network. We
compare and contrast the three atomistic visualizations and show
how they provide different insights and have different properties.
Our visualization implementations and CNN models are available
under an open-source license as part of gnina, our framework for
structure-based deep learning based off of AutoDock Vina [31] and
Caffe [32], at https://github.com/gnina.

2. Methods

After describing the design and training of a CNN model for pose
scoring and affinity prediction, we describe an approach for
analyzing the learned weights of the first layer of a grid-based CNN
model and three distinct methods for mapping a CNN prediction
back onto the atomic input.

2.1. Training

For our CNN model, we extend our previously described archi-
tecture [15] as shown in Fig. 1. The atoms of the input complex are
represented using truncated Gaussians and 35 distinct atom types,
shown in Table 1. This continuous representation is discretized onto
a cubic grid that is 23.5 A on each side and has a resolution of 0.5 A.
The input is fed through three units of max pooling and convolution
with rectified linear unit (ReLU) activation functions. Each con-
volutional layer applies a 3 x 3 x 3 convolutional filter across its
input with a stride of one to generate an output feature map with
the same dimension as the input. The result of the convolutional
layers is mapped to the network outputs with two separate fully
connected layers, with no hidden layers. One fully connected layer
is trained to score poses by generating a probability distribution
over the two pose classes, low ( < 2A) RMSD and high (> 4A) RMSD
poses, using a softmax layer (which scales predictions to be be-
tween zero and one and sum to one) and a logistic loss function:
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Table 1

The 35 atom types used in gnina. Carbon atoms are distinguished by aromaticity and
adjacency to polar atoms (“NonHydrophobe”). Polar atoms are distinguished by
hydrogen bonding propensity.

Receptor Atom Types Ligand Atom Types

AliphaticCarbonXSHydrophobe
AliphaticCarbonXSNonHydrophobe
AromaticCarbonXSHydrophobe
AromaticCarbonXSNonHydrophobe

AliphaticCarbonXSHydrophobe
AliphaticCarbonXSNonHydrophobe
AromaticCarbonXSHydrophobe
AromaticCarbonXSNonHydrophobe

Calcium Bromine
Iron Chlorine
Magnesium Fluorine
Nitrogen Nitrogen
NitrogenXSAcceptor NitrogenXSAcceptor
NitrogenXSDonor NitrogenXSDonor
NitrogenXSDonorAcceptor NitrogenXSDonorAcceptor
OxygenXSAcceptor Oxygen
OxygenXSDonorAcceptor OxygenXSAcceptor
Phosphorus OxygenXSDonorAcceptor
Sulfur Phosphorus
Zinc Sulfur
SulfurAcceptor
lIodine
Boron
K
Lpose(y,¥) = *Zl (v = i)log(a(¥);) (2)
i=1

The other fully connected layer is trained to predict the binding
affinity in log units using a pseudo-Huber loss function. This loss
interpolates between an L2 and L1 loss according to a parameter
0 to reduce outlier bias:

AN

LpseudofHuber(%y) = 62 1+ (T) - 52 (3)

As the training set includes incorrect (>4 A RMSD) poses, for
which the correct binding affinity is not well-defined, a hinge loss is
used so that the affinity prediction loss is only incurred on high
RMSD poses if the affinity is predicted to be too high. The complete
model used for training is available at https://github.com/gnina/
models.

For training data we use a set of poses generated by redocking
the ligands of the 2016 PDBbind refined set [33]. Poses were
generated using the AutoDock Vina scoring function [31] as
implemented in smina [13]. The binding site for docking was
defined using the pocket residues specified in the PDBbind. The
input ligand conformation was generated from 2D SMILES using
RDKit [34]. To increase the number of low RMSD poses in the
training set, the docked poses were supplemented by energy
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Fig. 1. Architecture of the network used to evaluate visualization methods. The input is a voxelized grid of Gaussian atom type densities.
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