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a  b  s  t  r  a  c  t

The  accurate  prediction  of the  melting  temperature  of organic  compounds  is  a  significant  problem  that
has  eluded  researchers  for  many  years.  The  most  common  approach  used  to  develop  predictive  models
entails  the  derivation  of  quantitative  structure-property  relationships  (QSPRs),  which  are multivariate
linear  relationships  between  calculated  quantities  that  are  descriptors  of  molecular  or electronic  features
and a  property  of interest.  In  this  report  the  derivation  of  QSPRs  to predict  melting  temperatures  of
energetic  materials  based  on  descriptors  calculated  using  the  AM1  semiempirical  quantum  mechanical
method  are  described.  In  total,  the  melting  points  and  experimental  crystal  structures  of  148  energetic
materials  were  analyzed.  Principal  components  analysis  was  performed  in order  to  assess  the  relative
importance  and  roles  of  the  descriptors  in  our  QSPR  models.  Also  described  are the  results  of  k  means
cluster  analysis,  performed  in  order  to identify  natural  groupings  within  our study  set of  structures.
The  QSPR  models  resulting  from  these  analyses  gave  training  set R2 values  of  0.6085  (RMSE  =  ± 15.7 ◦C)
and  0.7468  (RMSE  =  ±  13.2 ◦C). The  test  sets  for these  clusters  had  R2 values  of  0.9428  (RMSE  =  ±  7.0 ◦C)
and  0.8974  (RMSE  =  ± 8.8 ◦C),  respectively.  These  models  are  among  the  best  melting  point  QSPRs  yet
published  for  energetic  materials.

©  2015  Elsevier  Inc.  All  rights  reserved.

1. Introduction

The range in temperatures over which a substance melts is a
physical property of fundamental importance. This is especially
true in the energetic material community, where an unacceptably
low melting point of a notional material can render it completely
unfeasible for usage, regardless of any superior performance capa-
bility. When a substance undergoes a change in state from a
relatively ordered solid to a disordered liquid the average thermal
kinetic energy of the substance is sufficiently high so as to overcome
the attractive forces between the constituents of the substance.
The amount of thermal energy required to overcome the attractive
forces depends on a great many factors including the types of elec-
trostatic attractive forces between the constituents making up the
substance, symmetry of the individual constituents, and efficiency
with which the constituents are organized in the solid, just to name
a few. In addition, so-called bulk effects, such as crystal defects,
can affect the melting temperature of a substance. In common use
the melting point range of a substance is a measure of its purity
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and also an indicator of useful temperature range for a substance.
Prior knowledge of the melting point range is therefore an impor-
tant consideration in designing new materials. Toward designing
new materials a great many computationally derived mathematical
models have been developed for predicting such physical proper-
ties as boiling points, octanol-water partition coefficients [1], glass
transition temperatures [2], and melting points [1–9]. While there
have been many attempts to develop models for predicting melt-
ing points, to date most models have resulted in only moderately
accurate predictive capability and very few have been developed
specifically for energetic materials. Additionally, several attempts
have been made to generate melting point models that are appli-
cable to large numbers of structurally diverse compounds, it is
generally known in the QSPR community that a more accurate
model is produced when restricting the model to compounds of
a common structure type.

Mitchell et al. used an Artificial Neural Network (ANN) approach
to explore hypothesized reasons explaining why the QSPR
approach sometimes fails to develop good fits to experimental
data and/or highly predictive multiple correlation models for vari-
ous properties, including melting points [10]. Using the molecular
operating environment and MMF94× molecular mechanics-based
energy minimization the authors computed 567 2D and 3D descrip-
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tors for each molecule under investigation. The best model for each
property was determined by using four different multiple correla-
tion equation derivation algorithms: partial least squares, random
forest, k nearest neighbors, and support vector machine. These algo-
rithms were used to fit a pre-selected set of descriptors, chosen
by the “Ant Colony Optimization” algorithm. The most predictive
models were obtained for the octanol-water partition coefficient
with an R2 of 0.87 and the least predictive model was for the melting
temperature with an R2 of 0.46. The authors suggested that having
relatively few compounds with melting points at the extreme ends
of the range in experimental data may  have lead to the poor pre-
dictive capability of the model. They also suggested that thermal
decomposition of some compounds on melting likely contributed
to error in the experimental data that couldn’t be accounted for in
the regression models.

Karthikeyan et al. employed an ANN approach to derive pre-
dictive models for a diverse set of 4173 organic molecules [3]. The
descriptor set that they employed was also diverse, having such
descriptor types as physical quantities (charges, van der Waals
volume, etc.), connectivity and topology indices, pharmacophore
features (hydrogen bond donors/acceptors, charged partial sur-
face areas, etc.). The charges and dipole moments were computed
using PM3  [11] and AM1  [12] semiempirical quantum mechanical
methods, respectively. The authors reduced the dimensionality of
their data by performing principle components analysis (PCA). They
found that the types of descriptors representing the most variance
in the data could generally be categorized as those describing size,
polarity, and sign of the surface area partial charge. Further, the
authors found that models employing 2D descriptors outperformed
both models based solely on 3D and those based on combinations
of 2D and 3D descriptors. The 2D (best models) had coefficients
of multiple determination of R2 = 0.661 for the training set and an
RMSE of 48.0 ◦C. The corresponding test set gave an RMSE of 49.3 ◦C.

Given the documented difficulty in generating highly accurate
melting point QSPRs, Preiss et al. posed the question of whether
it was even possible to generate a chemically reasonable, uni-
versal, and simple melting point predictive model. Their melting
point model was based on the 1:1 salts of 520 organic compounds
[8]. Giving much consideration of the theoretical understanding
of the phase change process of melting the authors ultimately
derived a nine descriptor model. The descriptors were various
types including computed entropy and enthalpy of solvation terms.
The enthalpy of solvation was computed from geometries treated
with the BP86 [13–16] density functional theory (DFT) optimized
geometries using the TZVP basis set [17] and employing the COSMO
solvation model [18]. Their model also included torsional flexibility,
electrostatic, and molecular volume type descriptors. Their model
provided an R2 value of 0.537 and an average error of 33.5 ◦C or
9.3%.

Salahinejad, et al., attempted to generate a generally useful
model for the prediction of the enthalpy of sublimation (�Hsub)
of small organic molecules [19]. The authors fit a simple multiple
linear regression model consisting of four preselected descriptors
based on hydrophilicity and charged partial surface area descrip-
tors (CPSA) using an artificial neural network (ANN) approach. The
molecular basis set consisted of a very large and structurally diverse
set of 8241 small organic molecules, which was divided into train-
ing and test sets of 80% and 20% of the total number of molecules,
respectively. Using this approach they derived various QSPR mod-
els for �Hsub having R2 of 0.954 for the test set and R2 = 0.950 for
the test set. Subsequently, they treated the predicted �Hsub val-
ues as a descriptor and incorporated additional descriptors by an
artificial neural network approach to derive a QSPR model for melt-
ing points. The authors found it necessary to add 97 descriptors in
multiple ANN-derived models to derive predictive QSPRs having R2

values that varied from 0.77 to 0.79 for the training sets and from
0.75 to 0.79 for the test sets.

Lazzus developed a QSPR that utilized descriptors from the
results of calculations employing the PM3  semiempirical quan-
tum mechanical method [20]. His models were derived, first using
CODESSA [21] (Comprehensive Descriptors for Structural and Sta-
tistical Analysis) to compute and pre-analyze the descriptors to
eliminate descriptors which were significantly intercorrelated or
not significantly correlated with the experimental data. Following
the filtering of descriptors Lazzus derived his predictive models
using a back propagation ANN (BP ANN) method. For an eleven
descriptor model fit to a training set of 260 compounds he found
an average absolute deviation of 5.2% and for a 73 molecule test set
the deviation was 4.8%.

It is well known that QSPR models based on congeneric sets of
structures generally give better results. By focusing their work more
narrowly on compounds of a similar type, a number of investiga-
tors attempted to generate melting point QSPR models that would
have to account for less variance in the experimental data. Guan
et al. derived QSPR models on the basis of structures that were opti-
mized using the AM1  semiempirical quantum mechanical method
[22]. The compounds under study were the bromide and chloride
salts of various imidazoliums. Three sets of compounds were used
and within each set there were training and test sets. The training
sets consisted of 24, 16, and 40 compounds and the test sets con-
sisted of a number of compounds that was 25% of the number in the
corresponding training set. The authors carried out a comparison of
multiple linear regression (MLR) models obtained by Genetic Algo-
rithms to those obtained by BP ANN methods. In general they found
that the BP ANN models gave better results than the MLR  models.
The mean absolute errors (MAEs) for each of the respective MLR
model test sets were 20.52 K, 13.59 K, and 21.95 K. The MAEs for
the BP ANN derived model test sets were 8.77 K, 4.98 K, and 9.31 K,
respectively.

Brauner and Shacham examined the melting point of struc-
turally homologous series of compounds, which varied only in
the number of carbon atoms present in the molecule [23]. Their
multiple linear regression model was  based only on functions
of constitutional (number of carbon atoms) type descriptors and
were regressed on melting points for varying series of long-chain
hydrocarbon containing compounds (n-alkanes, n-alkanoic acids,
n-alkenes, n-mercaptans, and n-alkyl acetates). The average abso-
lute relative errors reported for the different sets were between 1%
and 9%.

Holder and Liu derived a melting point QSPR for organosil-
icon compounds [24]. Through a forward stepping multiple
linear regression approach they developed a more comprehensive
organosilicon melting point model, which was later refined for
silanes only. All structures in Holder’s work were modeled using
the SAM1 semiempirical quantum mechanical method [25]. The
descriptors were obtained directly from these calculations or were
calculated from quantities obtained in these calculations using
CODESSA. For the general organosilicon model they found a six
descriptor model for 97 training compounds having R2 = 0.789 and
an RMSE of 50.45 ◦C. For the general organosilicon model an exter-
nal test set of 32 compounds was  found to have R2 = 0.710 and an
RMSE of 42.44 ◦C. A better fit was  found for a more focused set of
62 structurally similar silanes. For this set Holder and Liu derived
a 4 descriptor model having R2 = 0.889 and an RMSE of 34.09 ◦C for
the training set and an external test set (N = 19) was found to have
R2 = 0.858 and an RMSE = 38.44 ◦C. Holder’s model was also refined
by an iterative robust regression analysis. The descriptors in the
obtained models were generally constitutional, electrostatic, and
thermodynamic in nature and were found to be chemically sensible
on the basis of theoretical considerations of melting behavior.
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