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a b s t r a c t 

The identification of connexel-wise associations, which involves examining functional connectivities be- 

tween pairwise voxels across the whole brain, is both statistically and computationally challenging. Al- 

though such a connexel-wise methodology has recently been adopted by brain-wide association studies 

(BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and 

depression, the multiple correction and power analysis methods designed specifically for connexel-wise 

analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework 

for connexel-wise significance testing based on the Gaussian random field theory. It includes control- 

ling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference meth- 

ods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can 

control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. 

Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate 

and increase statistical power by appropriately utilizing the spatial information of fMRI data. Impor- 

tantly, our method bypasses the need of non-parametric permutation to correct for multiple compar- 

ison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our 

method is shown in a case-control study. Our approach can identify altered functional connectivities in 

a major depression disorder dataset, whereas existing methods fail. A software package is available at 

https://github.com/weikanggong/BWAS . 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The human brain connectome is usually modeled as a net- 

work. In the brain’s network, accurately locating the connectiv- 

ity variations associated with phenotypes, such as clinical symp- 

toms, is critical for neuroscientists. With the development of neu- 

roimaging technology and an increasing number of publicly avail- 

able datasets, such as the 10 0 0 Functional Connectomes Project 

(FCP) ( Biswal et al., 2010 ), Human Connectome Project (HCP) 

( Glasser et al., 2016 ) and UK-Biobank ( Miller et al., 2016 ), large- 
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scale, image-based association studies have become possible and 

should help us improve our understanding of human brain func- 

tions. 

Using a priori knowledge of brain parcellation (e.g. Automated 

Anatomical Labeling atlas, Rolls et al., 2015 ) or an adoption of 

data-driven parcellation (e.g. Independent Component Analysis, 

Beckmann and Smith, 2004 ) to analyze the human connectome 

is the most popular approach, and many statistical methods have 

been designed for them ( Zalesky et al., 2012; Kim et al., 2014 ). 

However, methods that designed specifically for voxel-level con- 

nectivity analysis are still lacking. Therefore, in this paper, a sta- 

tistical framework for brain-wide association study (BWAS) is pro- 

posed ( Cheng et al., 2015a; 2015b; 2016 ). It directly uses voxels as 

nodes to define brain networks, and then tests the associations of 

each functional connectivity with phenotypes. 

https://doi.org/10.1016/j.media.2018.03.014 
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To conduct a systematic, fully-powered BWAS, two main issues 

should be carefully addressed. First, a multiple correction method 

to control the false-positive rate of massive univariate statistical 

tests should be developed. Second, a power analysis method to es- 

timate the required sample size should be designed. One may ask 

whether the methods widely used in region-level studies can be 

directly generalized to connexel-level studies. Two issues hinder 

such a direct generalization. First, the statistical tests have more 

complex spatial structures in BWAS. Therefore, as shown in our 

analysis, some widely-used multiple correction methods, which do 

not utilize the spatial information of data (e.g. Bonferroni correc- 

tion and false discovery rate (FDR), Benjamini and Hochberg, 1995; 

Benjamini and Yekutieli, 2001 ), may not be powerful enough to de- 

tect signals. Second, although non-parametric permutation meth- 

ods ( Nichols and Holmes, 2002 ) may account for the complex 

structures among hypothesis tests to provide a valid threshold, 

they are computationally very expensive in connexel-wise studies, 

owing to the requirement of performing billions of statistical tests. 

Therefore, an accurate and efficient method for multiple compari- 

son problem and power analysis is needed. 

Random field theory (RFT) is an important statistical tool in 

brain image analysis, and it has been widely used in the anal- 

ysis of task fMRI data ( Penny et al., 2011 ) and structure data 

( Ashburner and Friston, 20 0 0 ). Statistical parametric maps (SPM) 

are usually modeled as a discrete sampling of smooth Gaussian or 

related random fields ( Penny et al., 2011 ). The random field the- 

ory can control the FWER of multiple hypothesis testings by eval- 

uating whether the observed test statistic, or the spatial extent of 

clusters exceeding a cluster-defining threshold (CDT), is large by 

chance, which is known as peak-level and cluster-level inference 

respectively. Since Adler’s early work on the geometry of random 

field ( Adler, 1981; Adler and Taylor, 2009 ), theoretical results for 

different types of random fields have been obtained, such as Gaus- 

sian random field ( Friston et al., 1994; Worsley et al., 1996 ), t, χ2 , 

F random fields ( Worsley, 1994; Cao, 1999 ), multivariate random 

field ( Taylor and Worsley, 2008 ), cross-correlation random field 

( Cao et al., 1999 ). Among them, only the cross-correlation field is 

designed for connectivity analysis. In that framework, the voxel- 

level functional network is modeled as a six-dimensional cross- 

correlation random field, and the maximum distribution of the 

random field is used to identify strong between-voxel connections. 

Different from the above works, the aim of BWAS is to identify 

connectivities that are associated with phenotypes. To the best of 

our knowledge, no previous works have addressed this problem. In 

this paper, we show that the statistical map of BWAS, under the 

null hypothesis, can be modeled as a Gaussian random field with 

a suitable smoothness adjustment. Therefore, topological inference 

methods, such as peak intensity and cluster extent, are generalized 

from voxel-wise analysis to functional connectivity analysis. 

Besides controlling the type I error rate, estimating power and 

the required sample size for BWAS are also important. In genet- 

ics, for example, a high-quality GWAS analyzing one million single 

nucleotide polymorphism (SNP) usually requires tens of thousands 

of samples to reach adequate statistical power. In contrast, previ- 

ous BWAS analyses of schizophrenia, autism and depression have 

only had sample sizes less than one thousand ( Cheng et al., 2015a; 

2015b; 2016 ). Therefore, compared to GWAS, it is natural to ask if 

BWAS, which is usually based on a limited sample size, can with- 

stand the rigors of a large number of hypothesis tests. In this re- 

gard, most existing power analysis methods are designed for voxel- 

wise fMRI studies, including, for example, the simulation based 

method ( Desmond and Glover, 2002 ), the non-central distribu- 

tion based method ( Mumford and Nichols, 2008 ), and the method 

based on non-central random field theory (ncRFT) ( Hayasaka et al., 

2007 ). Among them, the ncRFT-based method can both take into 

account the spatial structure of fMRI data and avoid time con- 

suming simulation. Therefore, to analyze the power of BWAS, we 

adopted a methodology similar to that of the ncRFT-based method 

( Hayasaka et al., 2007 ). The signals at functional connectivities are 

modeled as a non-central Gaussian random field, and the power is 

estimated by a modified Gaussian random field theory. 

In this paper, a powerful method to address the multiple com- 

parison problem is proposed for BWAS ( Fig. 1 ). This method uses 

Gaussian random field theory to model the spatial structure of 

voxel-level connectome. It can test the odds that either the effect 

size of every single functional connectivity (peak-level inference) 

or the spatial extent of functional connectivity clusters exceed- 

ing a cluster-defining threshold (cluster-level inference) is large by 

chance. The performance of the method is tested in two resting- 

state fMRI datasets, and in both volume-based and surface-based 

fMRI data. Our method can control the false-positive rate accu- 

rately. Compared with Bonferroni correction and false discovery 

rate (FDR) approaches, our method can achieve a higher power 

and filter out false-positive connectivities by utilizing the spatial 

information. In addition, we develop a method to approximate the 

power of peak-level inference by a modified Gaussian random field 

theory ( Fig. 2 ). Power can be estimated in any specific location of 

connectome efficiently, which can help to determine the sample 

size for BWAS. The utility of our method is shown by identify- 

ing altered functional connectivities and estimating the required 

sample sizes in major depression disorder. The software package 

for BWAS can be downloaded at https://github.com/weikanggong/ 

BWAS . 

2. Material and methods 

2.1. Connexel-wise general linear model 

The popular general linear model approach is used in BWAS. 

Briefly, a voxel-level functional network is estimated for each sub- 

ject using the fMRI data, and the association between each func- 

tional connectivity and phenotype of interest is tested using the 

general linear model. 

In detail, the individual functional network is constructed first 

by calculating the Pearson correlation coefficients (PCC) between 

every pair of voxel time series. Let m be the number of voxels, s be 

the subject, and R (s ) = [ r (s ) 
i j 

] m ×m 

be the m × m functional network 

matrix for subject s . Each element of R ( s ) is the correlation coeffi- 

cient between voxel time series i and j for subject s . An element- 

wise Fisher’s Z transformation is then applied as Z (s ) = [ z (s ) 
i j 

] m ×m 

= [ 
1 
2 log 

( 1+ r (s ) 
i j 

1 −r 
(s ) 
i j 

)] 
m ×m 

, so that z (s ) 
i j 

will approximate a normal distri- 

bution. For every functional connectivity, a general linear model 

(GLM) is fitted by 

Y i j = X B i j + εi j 

where, Y i j = (z (1) 
i j 

, z (2) 
i j 

, . . . , z (n ) 
i j 

) is an n × 1 vector of functional con- 

nectivities between voxel i and j across n subjects, X is the com- 

mon n × q design matrix, B i j = (β1 
i j 
, β2 

i j 
, . . . , βq 

i j 
) is a q × 1 vector of 

regression coefficients, and ε ij is an n × 1 vector of random error, 

which is assumed to be an independent and identically distributed 

Gaussian random variable N(0 , σ 2 
i j 
) across subjects. The ordinary 

least square estimator for B ij is ˆ B i j = (X ′ X ) −1 X ′ Y i j , and for σ 2 
i j 
, it 

is ˆ σ 2 
i j 

= (Y i j − X ̂  B i j ) 
′ (Y i j − X ̂  B i j ) / (n − q ) . Then, a Student’s t -statistic 

at functional connectivity between voxel i and j can be expressed 

as: 

T i j = 

c ̂  B i j 

(c (X 

′ X ) −1 c ′ ˆ σ 2 
i j 
) 

1 
2 
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