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The identification of connexel-wise associations, which involves examining functional connectivities be-
tween pairwise voxels across the whole brain, is both statistically and computationally challenging. Al-
though such a connexel-wise methodology has recently been adopted by brain-wide association studies
(BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and
depression, the multiple correction and power analysis methods designed specifically for connexel-wise
analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework
for connexel-wise significance testing based on the Gaussian random field theory. It includes control-
ling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference meth-
ods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can
control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets.
Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate
and increase statistical power by appropriately utilizing the spatial information of fMRI data. Impor-
tantly, our method bypasses the need of non-parametric permutation to correct for multiple compar-
ison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our
method is shown in a case-control study. Our approach can identify altered functional connectivities in
a major depression disorder dataset, whereas existing methods fail. A software package is available at
https://github.com/weikanggong/BWAS.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

scale, image-based association studies have become possible and
should help us improve our understanding of human brain func-

The human brain connectome is usually modeled as a net- tions.

work. In the brain’s network, accurately locating the connectiv-
ity variations associated with phenotypes, such as clinical symp-
toms, is critical for neuroscientists. With the development of neu-
roimaging technology and an increasing number of publicly avail-
able datasets, such as the 1000 Functional Connectomes Project
(FCP) (Biswal et al, 2010), Human Connectome Project (HCP)
(Glasser et al., 2016) and UK-Biobank (Miller et al., 2016), large-
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Using a priori knowledge of brain parcellation (e.g. Automated
Anatomical Labeling atlas, Rolls et al.,, 2015) or an adoption of
data-driven parcellation (e.g. Independent Component Analysis,
Beckmann and Smith, 2004) to analyze the human connectome
is the most popular approach, and many statistical methods have
been designed for them (Zalesky et al., 2012; Kim et al., 2014).
However, methods that designed specifically for voxel-level con-
nectivity analysis are still lacking. Therefore, in this paper, a sta-
tistical framework for brain-wide association study (BWAS) is pro-
posed (Cheng et al., 2015a; 2015b; 2016). It directly uses voxels as
nodes to define brain networks, and then tests the associations of
each functional connectivity with phenotypes.


https://doi.org/10.1016/j.media.2018.03.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.03.014&domain=pdf
https://github.com/weikanggong/BWAS
mailto:jianfeng64@gmail.com
https://doi.org/10.1016/j.media.2018.03.014

16 W. Gong et al./Medical Image Analysis 47 (2018) 15-30

To conduct a systematic, fully-powered BWAS, two main issues
should be carefully addressed. First, a multiple correction method
to control the false-positive rate of massive univariate statistical
tests should be developed. Second, a power analysis method to es-
timate the required sample size should be designed. One may ask
whether the methods widely used in region-level studies can be
directly generalized to connexel-level studies. Two issues hinder
such a direct generalization. First, the statistical tests have more
complex spatial structures in BWAS. Therefore, as shown in our
analysis, some widely-used multiple correction methods, which do
not utilize the spatial information of data (e.g. Bonferroni correc-
tion and false discovery rate (FDR), Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001), may not be powerful enough to de-
tect signals. Second, although non-parametric permutation meth-
ods (Nichols and Holmes, 2002) may account for the complex
structures among hypothesis tests to provide a valid threshold,
they are computationally very expensive in connexel-wise studies,
owing to the requirement of performing billions of statistical tests.
Therefore, an accurate and efficient method for multiple compari-
son problem and power analysis is needed.

Random field theory (RFT) is an important statistical tool in
brain image analysis, and it has been widely used in the anal-
ysis of task fMRI data (Penny et al., 2011) and structure data
(Ashburner and Friston, 2000). Statistical parametric maps (SPM)
are usually modeled as a discrete sampling of smooth Gaussian or
related random fields (Penny et al., 2011). The random field the-
ory can control the FWER of multiple hypothesis testings by eval-
uating whether the observed test statistic, or the spatial extent of
clusters exceeding a cluster-defining threshold (CDT), is large by
chance, which is known as peak-level and cluster-level inference
respectively. Since Adler’s early work on the geometry of random
field (Adler, 1981; Adler and Taylor, 2009), theoretical results for
different types of random fields have been obtained, such as Gaus-
sian random field (Friston et al., 1994; Worsley et al., 1996), t, x2,
F random fields (Worsley, 1994; Cao, 1999), multivariate random
field (Taylor and Worsley, 2008), cross-correlation random field
(Cao et al,, 1999). Among them, only the cross-correlation field is
designed for connectivity analysis. In that framework, the voxel-
level functional network is modeled as a six-dimensional cross-
correlation random field, and the maximum distribution of the
random field is used to identify strong between-voxel connections.
Different from the above works, the aim of BWAS is to identify
connectivities that are associated with phenotypes. To the best of
our knowledge, no previous works have addressed this problem. In
this paper, we show that the statistical map of BWAS, under the
null hypothesis, can be modeled as a Gaussian random field with
a suitable smoothness adjustment. Therefore, topological inference
methods, such as peak intensity and cluster extent, are generalized
from voxel-wise analysis to functional connectivity analysis.

Besides controlling the type I error rate, estimating power and
the required sample size for BWAS are also important. In genet-
ics, for example, a high-quality GWAS analyzing one million single
nucleotide polymorphism (SNP) usually requires tens of thousands
of samples to reach adequate statistical power. In contrast, previ-
ous BWAS analyses of schizophrenia, autism and depression have
only had sample sizes less than one thousand (Cheng et al., 2015a;
2015b; 2016). Therefore, compared to GWAS, it is natural to ask if
BWAS, which is usually based on a limited sample size, can with-
stand the rigors of a large number of hypothesis tests. In this re-
gard, most existing power analysis methods are designed for voxel-
wise fMRI studies, including, for example, the simulation based
method (Desmond and Glover, 2002), the non-central distribu-
tion based method (Mumford and Nichols, 2008), and the method
based on non-central random field theory (ncRFT) (Hayasaka et al.,
2007). Among them, the ncRFT-based method can both take into
account the spatial structure of fMRI data and avoid time con-

suming simulation. Therefore, to analyze the power of BWAS, we
adopted a methodology similar to that of the ncRFT-based method
(Hayasaka et al., 2007). The signals at functional connectivities are
modeled as a non-central Gaussian random field, and the power is
estimated by a modified Gaussian random field theory.

In this paper, a powerful method to address the multiple com-
parison problem is proposed for BWAS (Fig. 1). This method uses
Gaussian random field theory to model the spatial structure of
voxel-level connectome. It can test the odds that either the effect
size of every single functional connectivity (peak-level inference)
or the spatial extent of functional connectivity clusters exceed-
ing a cluster-defining threshold (cluster-level inference) is large by
chance. The performance of the method is tested in two resting-
state fMRI datasets, and in both volume-based and surface-based
fMRI data. Our method can control the false-positive rate accu-
rately. Compared with Bonferroni correction and false discovery
rate (FDR) approaches, our method can achieve a higher power
and filter out false-positive connectivities by utilizing the spatial
information. In addition, we develop a method to approximate the
power of peak-level inference by a modified Gaussian random field
theory (Fig. 2). Power can be estimated in any specific location of
connectome efficiently, which can help to determine the sample
size for BWAS. The utility of our method is shown by identify-
ing altered functional connectivities and estimating the required
sample sizes in major depression disorder. The software package
for BWAS can be downloaded at https://github.com/weikanggong/
BWAS.

2. Material and methods
2.1. Connexel-wise general linear model

The popular general linear model approach is used in BWAS.
Briefly, a voxel-level functional network is estimated for each sub-
ject using the fMRI data, and the association between each func-
tional connectivity and phenotype of interest is tested using the
general linear model.

In detail, the individual functional network is constructed first
by calculating the Pearson correlation coefficients (PCC) between
every pair of voxel time series. Let m be the number of voxels, s be
the subject, and R®) = [rfjs)]mXm be the m x m functional network

matrix for subject s. Each element of R®) is the correlation coeffi-

cient between voxel time series i and j for subject s. An element-

wise Fisher’s Z transformation is then applied as Z©® = [zfj)]mxm =
1 l+r1.(,5)

I:j log (1—r1~(j»s) ):Imxm

bution. For every functional connectivity, a general linear model

(GLM) is fitted by

, so that zg) will approximate a normal distri-

Yij = XBjj + €ij

where, Y;; = (zl.(jl), zi(jz), A zi(}“)) is an n x 1 vector of functional con-
nectivities between voxel i and j across n subjects, X is the com-
mon n x q design matrix, Bj; = (,Bi]j, 5 o ,ij) is a g x 1 vector of
regression coefficients, and €j is an n x 1 vector of random error,
which is assumed to be an independent and identically distributed

Gaussian random variable N(O, 05) across subjects. The ordinary

least square estimator for Bj; is I§,-j = (X'X)"1X"Y;;, and for 05, it
is 62 = (¥ — XByj)'(Y;j — XB;;)/(n — ). Then, a Student’s t-statistic
at functional connectivity between voxel i and j can be expressed
as:
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