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a b s t r a c t 

Real-time 3D navigation during minimally invasive procedures is an essential yet challenging task, es- 

pecially when considerable tissue motion is involved. To balance image acquisition speed and resolu- 

tion, only 2D images or low-resolution 3D volumes can be used clinically. In this paper, a real-time and 

registration-free framework for dynamic shape instantiation, generalizable to multiple anatomical appli- 

cations, is proposed to instantiate high-resolution 3D shapes of an organ from a single 2D image intra- 

operatively. Firstly, an approximate optimal scan plane was determined by analyzing the pre-operative 

3D statistical shape model (SSM) of the anatomy with sparse principal component analysis (SPCA) and 

considering practical constraints. Secondly, kernel partial least squares regression (KPLSR) was used to 

learn the relationship between the pre-operative 3D SSM and a synchronized 2D SSM constructed from 

2D images obtained at the approximate optimal scan plane. Finally, the derived relationship was applied 

to the new intra-operative 2D image obtained at the same scan plane to predict the high-resolution 3D 

shape intra-operatively. A major feature of the proposed framework is that no extra registration between 

the pre-operative 3D SSM and the synchronized 2D SSM is required. Detailed validation was performed 

on studies including the liver and right ventricle (RV) of the heart. The derived results (mean accuracy 

of 2.19 mm on patients and computation speed of 1 ms) demonstrate its potential clinical value for real- 

time, high-resolution, dynamic and 3D interventional guidance. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Current clinical systems for minimally invasive procedures, such 

as cardiac radio-frequency ablation, image-guided needle biopsies, 

and endovascular interventions, typically incorporate static 3D sur- 

faces for guidance. Real-time dynamic tracking of 3D surfaces can 

help to optimize the interventional procedure, especially for com- 

plex anatomical structures undergoing gross tissue deformation, 

bulk organ motion, and potential topological changes during inter- 

ventions. 

A combination of multiple imaging modalities has been used 

for dynamic 3D navigation. For example, a real-time registra- 

tion scheme based on both spatial registration and electrocar- 

diography was proposed to overlay pre-operative 3D magnetic 

resonance (MR) or computed tomography (CT) volumes onto 

intra-operative 2D ultrasound images for dynamic 3D navigation 

( Huang et al., 2009 ). 3D transesophageal echocardiography (TEE) 

was fused with 2D X-ray fluoroscopic images using image local- 
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ization and calibration for dynamic cardiac navigation ( Gao et al., 

2012 ). However, based on a combination of multiple imaging 

modalities, the dynamic 3D shapes were either interpolated from 

pre-operative 3D volumes or intra-operatively collected 3D vol- 

umes with low-resolution. A 3D shape recovery scheme based 

on intra-operative 2D images including X-ray, ultrasound, and MR 

could take intra-operative information into account whilst achiev- 

ing high-resolution at the same time. This kind of 3D shape re- 

covery is termed dynamic shape instantiation. The scheme may or 

may not involve the use of template models ( Filippi et al., 2008 ). 

Without template models used, more intra-operative information 

and longer image acquisition time are needed; for example, at least 

seven intra-operative 2D images were needed for reasonable 3D 

prostate reconstruction ( Cool et al., 2006 ). In this paper, a sin- 

gle intra-operative 2D image is targeted and hence we focus on 

template-based 3D shape instantiation. 

For template-based 3D shape instantiation methods, statisti- 

cal shape model (SSM) ( Frangi et al., 2002 ), free form deforma- 

tion (FFD) ( Koh et al., 2011 ), and Laplacian surface deformation 

( Karade and Ravi, 2015 ) can be used for the representation of tem- 

plates. SSM ( Cootes et al., 1995 ) is a popular technique which 

represents a set of 3D meshes or 2D contours with the same 

https://doi.org/10.1016/j.media.2017.11.009 

1361-8415/© 2017 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.media.2017.11.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.11.009&domain=pdf
mailto:xiaoyun.zhou14@imperial.ac.uk
mailto:g.z.yang@imperial.ac.uk
mailto:su-lin.lee@imperial.ac.uk
https://doi.org/10.1016/j.media.2017.11.009


X.-Y. Zhou et al. / Medical Image Analysis 44 (2018) 86–97 87 

number of vertices and connectivities. SSM-based 3D shape in- 

stantiation learns from shape variations rather than only apply- 

ing smoothness and 2D/3D similarity as the constraints. It de- 

forms an initial 3D SSM to match intra-operative sparse inputs 

such as ultrasound-derived surface points ( Barratt et al., 2008 ), 

digitized landmarks ( Rajamani et al., 2007 ), or two or more cal- 

ibrated X-ray images ( Baka et al., 2011 ). These methods usually 

learn a model from a training set of anatomies of multiple patients 

and deform the learned model for a new patient, which requires a 

high anatomical similarity between patients. This learning is not 

suitable for patients with anatomical anomalies. For example, pa- 

tients who have undergone liver resection have a significantly dif- 

ferent liver shape to other subjects. A possible solution for these 

specific cases has been proposed in Lee et al. (2010) . Here, lim- 

ited optimal scan planes were determined by analyzing the pre- 

operative and patient-specific 3D SSM of the liver with principal 

component analysis (PCA). The relationship between pre-operative 

3D SSM and synchronized 2D SSM constructed from 2D images at 

the optimal scan planes was learned by partial least squares re- 

gression (PLSR). Finally, with new intra-operative 2D images ob- 

tained at the same scan planes, the 3D shape was instantiated 

intra-operatively by applying the PLSR-derived relationship. How- 

ever, in Lee et al. (2010) , the optimal scan plane determination 

depended on the selected vertices that were deemed informative 

but were highly correlated and clustered. PLSR can only derive lin- 

ear relationships while the deformations of most anatomies are 

non-linear. Based on Lee et al. (2010) , a framework which achieves 

more accurate, robust, generalizable and convenient shape instan- 

tiations from a single intra-operative 2D image is proposed in this 

paper. 

Subspace reprojection was proposed to determine an optimal 

scan plane for SSM-based 3D shape instantiation by fitting a plane 

to the most informative vertices ( Lee et al., 2005 ). This optimal 

scan plane was shown to have enhanced accuracy compared to 

other scan planes( Lee et al., 2005 ). By applying PCA ( Jolliffe, 2002 ) 

on the pre-operative 3D SSM, the informative vertices which con- 

tribute most to the shape variations are determined by the load- 

ings of principal components ( Lee et al., 2010 ). The downside of 

using PCA is that the derived principal components are linear com- 

binations of multiple variables and therefore the selected infor- 

mative variables are highly related and difficult to interpret. This 

phenomenon when reflected in our application is that the selected 

informative vertices are clustered and are not the real and inde- 

pendent informative vertices. Many methods have been proposed 

to solve this issue, including rotation methods ( Jolliffe, 1995 ), lim- 

ited set of integers ( Vines, 20 0 0 ), and simplified component tech- 

nique least absolute shrinkage and selection operator (SCoTLASS) 

( Jolliffe et al., 2003 ). Simple thresholding is a common and infor- 

mal method usually used in practice ( Lee et al., 2010 ); however, 

this method lacks theoretical support and usually causes prob- 

lems ( Cadima and Jolliffe, 1995 ). Recently, Zou et al. proposed 

sparse PCA (SPCA) which reformulated PCA into a regression- 

type optimization problem and then added a L1 constraint to 

achieve sparse loadings; they demonstrated improved performance 

of SPCA in selecting the real informative variables over previous 

methods ( Zou et al., 2006 ). A SPCA toolbox was later developed 

( AU: Please provide an update for reference ”Sjöstrand et al.(2012), 

in press”.[Sjöstrand et al.(2012)]Sjöstrand, Clemmensen ). 

PLSR is a linear regression method which has a similar pre- 

diction accuracy to ridge regression (RR) and principal component 

regression (PCR) ( Frank and Friedman, 1993 ). It is more widely 

used than RR and PCR in medical problems, such as cardiac mo- 

tion prediction ( Ablitt et al., 2004 ) and craniofacial reconstruc- 

tion ( Duan et al., 2015 ), as it is more suitable for problems with 

a larger number of variables and fewer number of observations 

( Rosipal and Trejo, 2001 ). However, its accuracy for non-linear mo- 

tions is limited. 

Many non-linear PLSR variations have been proposed and they 

can be divided into two groups ( Rosipal and Krämer, 2006 ): the 

first group reformulates the linear relationship into a non-linear 

one by polynomial functions, smoothing splines, artificial neu- 

ral networks, and radial basis function networks while the sec- 

ond group maps the original variables into a higher dimensional 

space and regresses the mapped variables in the higher dimen- 

sion, for example, kernel space. Kernel PL SR (KPL SR) ( Rosipal and 

Trejo, 2001 ) from the second group is adopted in this paper for 

improved computation speed as its formulation is as time-efficient 

as PLSR and avoids the non-linear optimization in the first group. 

In this paper, the high-resolution 3D shape of a dynamic 

anatomy was instantiated from a single intra-operative 2D image 

in real-time. Firstly, the anatomy was scanned by MR or CT pre- 

operatively for multiple 3D volumes along the dynamic cycle and 

a 3D SSM was constructed. SPCA was applied on the pre-operative 

3D SSM to select the informative vertices which were used to fit 

an optical scan plane. Local adjustments of the scan plane pa- 

rameters for better accessibility, visibility or satisfying other lo- 

cal constraints is possible without incurring major errors, as the 

later KPLSR-based 3D shape instantiation scheme is robust to opti- 

mal scan plane derivations. Secondly, 2D images synchronized with 

the pre-operative scanning were obtained at the approximate op- 

timal scan plane and were sampled to generate a synchronized 2D 

SSM. KPLSR was applied to learn the relationship between the pre- 

operative 3D SSM and the synchronized 2D SSM. Finally, the high- 

resolution 3D shape was instantiated intra-operatively by applying 

the KPLSR-derived relationship onto a new intra-operative 2D im- 

age at the same scan plane. The overall framework of the proposed 

dynamic shape instantiation is illustrated in Fig. 1 . Due to the 

learning of patient-specific models, the framework is applicable to 

any anatomy. No extra registration is needed for the pre-operative 

3D SSM and the synchronized 2D SSM. Validation was performed 

on the liver (two digital liver phantoms, one dynamic liver phan- 

tom, one in vivo porcine liver, eight metastatic livers) and the car- 

diac right ventricle (RV) (18 asymptomatic RVs and 9 hypertrophic 

cardiomyopathy (HCM) RVs); we anticipate that potential applica- 

tions of our work will include percutaneous liver biopsy, cardiac 

catheterization ( Razavi et al., 2003 ), and intra-myocardial therapy 

( Saeed et al., 2005 ). For example, in cardiac ablation, the instanti- 

ated 3D RV shape can be used to help navigate the catheter tip to 

the target ablation area. 

2. Methodology 

The methods for determining the optimal scan plane are de- 

scribed in Section 2.1 . The learning and instantiation based on 

KPLSR are described in Section 2.2 . Finally, the data collection and 

detailed validation experiments are in Section 2.3 . 

2.1. Optimal scan plane determination 

By pre-operatively scanning the target anatomy with CT or 

MR, a 4D volume consisting of multiple 3D volumes at differ- 

ent time frames along the dynamic cycle of the anatomy was ob- 

tained. These 3D volumes were represented with 3D meshes using 

the same number of vertices and connectivities, which created a 

pre-operative 3D SSM (a point distribution model) with vertices 

Y N × numY × 3 , where N is the number of time frames and numY is 

the number of vertices. By rearranging the ( x, y, z ) coordinates of 

the vertices as independent variables, Y N × q was obtained, where 

q = numY × 3 is the number of variables. Without loss of general- 

ity, Y N × q was centered and normalized as Y norm 

with the mean and 

norm of each column as 0 and 1. 
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