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a b s t r a c t 

Positron Emission Tomography (PET) data is intrinsically dynamic, and kinetic analysis of dynamic PET 

data can substantially augment the information provided by static PET reconstructions. Yet despite the 

insights into disease that kinetic analysis offers, it is not used clinically and seldom used in research 

beyond the preclinical stage. The utility of PET kinetic analysis is hampered by several factors including 

spatial inconsistency within regions of homogeneous tissue and relative computational expense when fit- 

ting complex models to individual voxels. Even with sophisticated algorithms inconsistencies can arise 

because local optima frequently have narrow basins of convergence, are surrounded by relatively flat 

(uninformative) regions, have relatively low-gradient valley floors, or combinations thereof. Based on the 

observation that cost functions for individual voxels frequently bear some resemblance to each-other, 

this paper proposes the federated optimisation of the individual kinetic analysis problems within a given 

image. This approach shares parameters proposed during optimisation with other, similar voxels. Feder- 

ated optimisation exploits the redundancy typical of large medical images to improve the optimisation 

residuals, computational efficiency and, to a limited extent, image consistency. This is achieved without 

restricting the formulation of the kinetic model, resorting to an explicit regularisation parameter, or lim- 

iting the resolution at which parameters are computed. 

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved. 

1. Introduction 

This work is concerned with the development of a more robust 

approach for analysing dynamic medical images that is agnostic 

to model and sufficiently efficient for practical use. The approach 

developed here obtains rapid and robust regressions of non-linear 

models despite the relatively high noise typical of certain images, 

particularly Positron Emission Tomography (PET) images. This is 

achieved by exploiting the substantial redundancy within dynamic 

medical images, which frequently contain hundreds of thousands 

of time varying voxel intensities. 

The analysis of dynamic Positron Emission Tomography (PET) 

images, and Magnetic Resonance Images (MRI), is useful for gain- 

ing an understanding of biological phenomena such as cancer. For 

PET, where acquisition must be performed over a period of time, 

the raw data is intrinsically dynamic, i.e. the dynamic data is ob- 
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tained without altering the imaging protocol by extending scan 

time or otherwise. Using kinetic analysis techniques, dynamic data 

can be converted into a form that is more amenable to biologi- 

cal interpretation for clinicians. This is achieved by specifying a 

model that encodes the movement of a biological tracer through 

a set of states, which may be considered as metabolic states or 

anatomical locations ( Carson, 2005; Cherry et al., 2003; Schmidt 

and Turkheimer, 2002; Watabe et al., 2006 ). The free parameters 

in the model can be fitted to the data using standard non-linear 

optimisation techniques ( Levenberg, 1944; Marquardt, 1963 ), albeit 

with some customisation to clamp values to a physiologically fea- 

sible range, e.g. by enforcing positivity. 

Yet despite the availability of dynamic data and apparent ease 

with which it may be analysed, dynamic information is not gen- 

erally used in the clinic, and even in research it is seldom used 

beyond the preclinical stage. A reason for the limited usage of 

dynamic data could be that the consistency required for reliable 

interpretation of processed data is not currently attained. The 

high noise typical of PET images can result in relatively unstable 
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Fig. 1. (a) Cost function surface for example time activity curve after optimisation is complete, with point of termination shown (red square and pointer). Levenberg- 

Marquardt optimisation makes a series of suggested parameters based on local gradient (blue lines with dots), but misses the local optimum (green square), due the to local 

orientation of surface. (b) The time activity curve (red circles) has a number of similar quality solutions corresponding to points in (a), despite a relatively wide variation 

in parameters, which is indicative of the flatness of the cost function in many areas in (a). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

solutions, because local optima frequently have narrow basins of 

convergence, are surrounded by flat and uninformative regions, 

have low gradient valley floors or combinations thereof. An exam- 

ple of this is shown in Fig. 1 . The net result is that many voxels 

have a basin of convergence that is difficult to find without sam- 

pling wide swathes of parameter-space, which can be too ineffi- 

cient for practice. 

1.1. Previous work 

The literature contains many alternative methods that seek to 

robustly estimate kinetic parameters including graphical analysis, 

methods that rely on basis functions and direct fitting of the model 

via non-linear optimisation ( Watabe et al., 2006 ). 

Graphical analysis approaches, such as Gjedde-Patlak analy- 

sis ( Gjedde, 1981; Patlak et al., 1983; Patlak and Blasberg, 1985 ) 

(for irreversible models), Logan analysis ( Logan et al., 1990 ) (for 

reversible models), relative equilibrium approaches ( Zhou et al., 

2009 ) (to more robustly handle noise), or combinations thereof 

( Zhou et al., 2010 ), are typically rapid and robust as they involve 

performing linear regressions on selected time-varying functions 

derived from the tissues and blood. However, such graphical ap- 

proaches require lumping multiple parameters that may be of in- 

terest individually ( Ikoma et al., 2008 ). In certain applications e.g. 

modelling tracers for the first time ( Huang et al., 1991 ), this can be 

overly restrictive. 

A more flexible but more costly approach (computationally) is 

to partly linearise the model by integrating both sides of the model 

equation, such as applied to the Kety-Schmidt model for cerebral 

blood flow ( Kety and Schmidt, 1948 ) in Huang et al. (1982) . Feng 

et al. (1993) extended the method in an approach called Gener- 

alised Linear Least Squares (GLLS) to account for the increased bias 

imposed by fitting errors in earlier time-frames. This was extended 

in Chen et al. (1998) to multiple compartment models and to han- 

dle spillover into image derived blood input functions. These ap- 

proaches are now sufficiently robust to noise that they have been 

applied to SPECT ( Wen et al., 2009 ). The main challenge for GLLS 

and its brethren is the difficulty in enforcing parameter constraints 

( Zeng et al., 2012 ). 

Blomqvist (1984) took the approach of evaluating individual in- 

tegrals as functions of the non-linear parameters (the basis) and 

computing the linear combination of the basis functions to obtain 

the remaining parameters. van den Hoff et al. (1993) combined this 

with methods to deal with delay and signal dispersion which are 

non-commutative ( Meyer, 1989 ). Boellaard et al. (2005) found the 

utilisation of basis functions to be more accurate than GLLS but 

more costly. Hong and Fryer (2010) reduce computational cost by 

replacing each integral with a closed form convolution of expo- 

nentials. Kadrmas and Oktay (2013) reformulate slightly to guaran- 

tee individual compartments are distinguishable and use the strat- 

egy of splitting the non-linear and linear portions of the problem 

and use non-negative least squares ( Lawson et al., 1995 ) (NNLS) 

to enforce positivity. Smith et al. (2010) formulate the blood input 

function as a sum of exponential curves, for a rapidly computed 

analytic sum of convolved exponentials formulation, because the 

formulation allows new fits to be generated in closed form. This 

formulation also requires no branching making it a good candidate 

for GPU implementation which has many advantages in terms of 

speed. 

Gunn et al. (2002) fully exploit the idea of treating TACs as lin- 

ear combinations of a set of basis functions by utilising develop- 

ments in sparse modelling ( Chen et al., 2001 ). Gunn et al. decom- 

pose TACs into a sparse set of entries from a dictionary of basis 

vectors consisting of exponentials convolved with the blood input 

function. This approach combines the advantages of globally op- 

timal solutions using quadratic programming techniques while al- 

lowing model complexity to vary appropriately with the data. So- 

lution accuracy is (slightly) limited by dictionary resolution, but re- 

quired dictionary resolution is independent of the dimension of the 

parameters. 

Various approaches enable integration with image reconstruc- 

tion, as proposed by Carson et al. (1986) for the Kety-Schmidt 

model, allowing the data to be fitted on a temporally continuous 

basis. Basis functions formulations allow more complex models to 

be incorporated into reconstruction ( Reader et al., 2006 ), also using 

alternative basis selections, such as exponential splines ( Verhaeghe 

et al., 2008 ). More recently, motion correction has been incorpo- 

rated as well ( Jiao et al., 2012; Pedemonte et al., 2011 ). Integration 

with image reconstruction requires list-mode data to be available, 

are relatively costly and can restrict the model formulation. 

Of all the proposed approaches, it is acknowledged that 

non-linear least squares approaches generally retain the greatest 
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