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a b s t r a c t 

Recent advances in machine learning yielded new techniques to train deep neural networks, which re- 

sulted in highly successful applications in many pattern recognition tasks such as object detection and 

speech recognition. In this paper we provide a head-to-head comparison between a state-of-the art in 

mammography CAD system, relying on a manually designed feature set and a Convolutional Neural Net- 

work (CNN), aiming for a system that can ultimately read mammograms independently. Both systems are 

trained on a large data set of around 45,0 0 0 images and results show the CNN outperforms the traditional 

CAD system at low sensitivity and performs comparable at high sensitivity. We subsequently investigate 

to what extent features such as location and patient information and commonly used manual features 

can still complement the network and see improvements at high specificity over the CNN especially with 

location and context features, which contain information not available to the CNN. Additionally, a reader 

study was performed, where the network was compared to certified screening radiologists on a patch 

level and we found no significant difference between the network and the readers. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Nearly 40 million mammographic exams are performed in the 

US alone on a yearly basis, arising predominantly from screening 

programs implemented to detect breast cancer at an early stage, 

which has been shown to increase chances of survival ( Tabar et al., 

2003; Broeders et al., 2012 ). Similar programs have been imple- 

mented in many western countries. All this data has to be in- 

spected for signs of cancer by one or more experienced readers 

which is a time consuming, costly and most importantly error 

prone endeavor. Striving for optimal health care, Computer Aided 

Detection and Diagnosis (CAD) ( Giger et al., 20 01; Doi, 20 07; 20 05; 

van Ginneken et al., 2011 ) systems are being developed and are 

currently widely employed as a second reader ( Rao et al., 2010; 

Malich et al., 2006 ), with numbers from the US going up to 70% of 

all screening studies in hospital facilities and 85% in private insti- 

tutions ( Rao et al., 2010 ). Computers do not suffer from drops in 

concentration, are consistent when presented with the same input 

data and can potentially be trained with an incredible amount of 

∗ Corresponding author. 

E-mail address: thijs.kooi@radboudumc.nl , email@thijskooi.com (T. Kooi). 

training samples, vastly more than any radiologist will experience 

in his lifetime. 

Until recently, the effectiveness of CAD systems and many other 

pattern recognition applications depended on meticulously hand- 

crafted features, topped off with a learning algorithm to map it to 

a decision variable. Radiologists are often consulted in the process 

of feature design and features such as the contrast of the lesion, 

spiculation patterns and the sharpness of the border are used, in 

the case of mammography. These feature transformations provide 

a platform to instill task-specific, a-priori knowledge, but cause a 

large bias towards how we humans think the task is performed. 

Since the inception of Artificial Intelligence (AI) as a scientific dis- 

cipline, research has seen a shift from rule-based, problem spe- 

cific solutions to increasingly generic, problem agnostic methods 

based on learning, of which deep learning ( Bengio, 2009; Bengio 

et al., 2013; Schmidhuber, 2015; LeCun et al., 2015 ) is its most 

recent manifestation. Directly distilling information from training 

samples, rather than the domain expert, deep learning allows us to 

optimally exploit the ever increasing amounts of data and reduce 

human bias. For many pattern recognition tasks, this has proven to 

be successful to such an extent that systems are now reaching hu- 

man or even superhuman performance ( Cire ̧s an et al., 2012; Mnih 

et al., 2015; He et al., 2015 ). 
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The term deep typically refers to the layered non-linearities 

in the learning systems, which enables the model to represent 

a function with far less parameters and facilitates more efficient 

learning ( Bengio et al., 2007; Bengio, 2009 ). These models are not 

new and work has been done since the late seventies ( Fukushima, 

1980; Lecun et al., 1998 ). In 2006, however, two papers ( Hinton 

et al., 2006; Bengio et al., 2007 ) showing deep networks can be 

trained in a greedy, layer-wise fashion sparked new interest in the 

topic. Restricted Boltzmann Machines (RBM’s), probabilistic gener- 

ative models, and autoencoders (AE), one layer neural networks, 

were shown to be expedient pattern recognizers when stacked 

to form Deep Belief Networks (DBN) ( Hinton et al., 2006; Ben- 

gio et al., 2007 ) and Stacked Autoencoders, respectively. Currently, 

fully supervised, Convolutional Neural Networks (CNN) dominate 

the leader boards ( Krizhevsky et al., 2012; Zeiler and Fergus, 

2014; Simonyan and Zisserman, 2014; Ioffe and Szegedy, 2015; He 

et al., 2015 ). Their performance increase with respect to the pre- 

vious decades can largely be attributed to more efficient training 

methods, advances in hardware such as the employment of many 

core computing ( Cire ̧s an et al., 2011 ) and most importantly, sheer 

amounts of annotated training data ( Russakovsky et al., 2014 ). 

To the best of our knowledge, Sahiner et al. (1996) were the 

first to attempt a CNN setup for mammography. Instead of raw im- 

ages, texture maps were fed to a simple network with two hidden 

layers, producing two and three feature images respectively. The 

method gave acceptable, but not spectacular results. Many things 

have changed since this publication, however, not only with regard 

to statistical learning, but also in the context of acquisition tech- 

niques. Screen Film Mammography (SFM) has made way for Dig- 

ital Mammography (DM), enabling higher quality, raw images in 

which pixel values have a well-defined physical meaning and eas- 

ier spread of large amounts of training data. Given the advances in 

learning and data, we feel a revisit of CNNs for mammography is 

more than worthy of exploration. 

Work on CAD for mammography ( Elter and Horsch, 2009; 

Nishikawa, 2007; Astley and Gilbert, 2004 ) has been done since 

the early nineties but unfortunately, progress has mostly stag- 

nated in the past decade. Methods are being developed on small 

data sets ( Mudigonda et al., 20 0 0; Zheng et al., 2010 ) which 

are not always shared and algorithms are difficult to compare 

( Elter and Horsch, 2009 ). Breast cancer has two main manifesta- 

tions in mammography, firstly the presence of malignant soft tis- 

sue or masses and secondly the presence of microcalcifications 

( Cheng and Huang, 2003 ) and separate systems are being devel- 

oped for each. Microcalcifications are often small and can easily 

be missed by oversight. Some studies suggest CAD for microcal- 

cifications is highly effective in reducing oversight ( Malich et al., 

2006 ) with acceptable numbers of false positives. However, the 

merit of CAD for masses is less clear, with research suggesting hu- 

man errors do not stem from oversight but rather misinterpreta- 

tion ( Malich et al., 2006 ). Some studies show no increase in sen- 

sitivity or specificity with CAD ( Taylor et al., 2005 ) for masses or 

even a decreased specificity without an improvement in detection 

rate or characterization of invasive cancers ( Fenton et al., 2011; 

Lehman et al., 2015 ). We therefore feel motivated to improve upon 

the state-of-the art. 

In previous work in our group ( Hupse et al., 2013 ) we showed 

that a sophisticated CAD system taking into account not only local 

information, but also context, symmetry and the relation between 

the two views of the same breast can operate at the performance 

of a resident radiologist and of a certified radiologist at high speci- 

ficity. In a different study ( Karssemeijer et al., 2004 ) it was shown 

that when combining the judgment of up to twelve radiologists, 

reading performance improved, providing a lower bound on the 

maximum amount of information in the medium and suggesting 

ample room for improvement of the current system. 

In this paper, we provide a head-to-head comparison between 

a CNN and a CAD system relying on an exhaustive set of manu- 

ally designed features and show the CNN outperforms a state-of- 

the-art mammography CAD system, trained on a large dataset of 

around 45,0 0 0 images. We will focus on the detection of solid, 

malignant lesions including architectural distortions, treating be- 

nign abnormalities such as cysts or fibroadenomae as false posi- 

tives. The goal of this paper is not to give an optimally concise 

set of features, but to use a complete set where all descriptors 

commonly applied in mammography are represented and provide 

a fair comparison with the deep learning method. As mentioned 

by Szegedy et al. (2014) , success in the past two years in the con- 

text of object recognition can in part be attributed to judiciously 

combining CNNs with classical computational vision techniques. In 

this spirit, we employ a candidate detector to obtain a set of sus- 

picious locations, which are subjected to further scrutiny, either by 

the classical system or the CNN. We subsequently investigate to 

what extent the CNN is still complementary to traditional descrip- 

tors by combining the learned representation with features such 

as location, contrast and patient information, part of which are not 

explicitly represented in the patch fed to the network. Lastly, a 

reader study is performed, where we compare the scores of the 

CNN to experienced radiologists on a patch level. 

The rest of this paper is organized as follows. In the next sec- 

tion, we will give details regarding the candidate detection system, 

shared by both methods. In Section 3 , the CNN will be introduced 

followed by a description of the reference system in Section 4 . In 

Section 5 , we will describe the experiments performed and present 

results, followed by a discussion in Section 6 and conclusion in 

Section 7 . 

2. Candidate detection 

Before gathering evidence, every pixel is a possible center of 

a lesion. This approach yields few positives and an overwhelming 

amount of predominantly obvious negatives. The actual difficult 

examples could be assumed to be outliers and generalized away, 

hindering training. Sliding window methods, previously popular in 

image analysis are recently losing ground in favor of candidate de- 

tection ( Hosang et al., 2015 ) such as selective search ( Uijlings et al., 

2013 ) to reduce the search space ( Girshick et al., 2014; Szegedy 

et al., 2014 ). We therefore follow a two-stage classification pro- 

cedure where in the first stage, candidates are detected and sub- 

jected to further scrutiny in a second stage, similar to the pipeline 

described in Hupse et al. (2013) . Rather than class agnostic and 

potentially less accurate candidate detection methods, we use an 

algorithm designed for mammographic lesions ( Karssemeijer and 

te Brake, 1996 ). It operates by extracting five features based on first 

and second order Gaussian kernels, two designed to spot the cen- 

ter of a focal mass and two looking for spiculation patterns, char- 

acteristic of malignant lesions. A final feature indicates the size of 

optimal response in scale-space. 

To generate the pixel based training set, we extracted positive 

samples from a disk of constant size inside each annotated malig- 

nant lesion in the training set, to sample the same amount from 

every lesion size and prevent bias for larger areas. To obtain nor- 

mal pixels for training, we randomly sampled 1 in 300 pixels from 

normal tissue in normal images, resulting in approximately 130 

negative samples per normal image. The resulting samples were 

used to train a random forest ( Breiman, 2001 ) (RF) classifier. RFs 

can be parallelized easily and are therefore fast to train, are less 

susceptible to overfitting and easily adjustable for class-imbalance 

and therefore suitable for this task. 

To obtain lesion candidates, the RF is applied to all pixel loca- 

tions in each image, both in the train and test set, generating a 

likelihood image, where each pixel indicates the estimated suspi- 
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