
Medical Image Analysis 35 (2017) 554–569 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Deformable regions of interest with multiple points for tissue tracking 

in echocardiography 

Xiaoke Cui a , ∗, Takumi Washio 

a , Tomoaki Chono 

b , Hirotaka Baba 

b , Jun-ichi Okada 

a , 
Seiryo Sugiura 

a , Toshiaki Hisada 

a 

a Graduate School of Frontier Sciences, The University of Tokyo, 3F, 178-4-4, Wakashiba, Kashiwa City, 277-0871, Chiba, Japan 
b Medical Systems Engineering Division 2, Hitachi Aloka Medical, Ltd., 3-1-1, Higashikoigakubo, Kokubunji, Tokyo, 185-0014, Japan 

a r t i c l e i n f o 

Article history: 

Received 20 April 2015 

Revised 25 July 2016 

Accepted 10 August 2016 

Available online 15 September 2016 

Keywords: 

Echocardiography tracking 

Deformable ROI 

Multiple tracking points 

Stabilization 

Meshfree method 

Numerical phantom 

Database 

a b s t r a c t 

By tracking echocardiography images more accurately and stably, we can better assess myocardial func- 

tions. In this paper, we propose a new tracking method with deformable Regions of Interest (ROIs) aim- 

ing at rational pattern matching. For this purpose we defined multiple tracking points for an ROI and 

regarded these points as nodes in the Meshfree Method to interpolate displacement fields. To avoid un- 

reasonable distortion of the ROI caused by noise and perturbation in echo images, we introduced a sta- 

bilization technique based on a nonlinear strain energy function. Examples showed that the combination 

of our new tracking method and stabilization technique provides competitive and stable tracking. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The quality of echocardiography images is progressively improv- 

ing because of recent advances in ultrasound sensors and data pro- 

cessing technologies. Furthermore, the performance of accompany- 

ing computer systems has also advanced rapidly because of mul- 

ticore CPU and GPU technologies, which enable us to run more 

extensive software for image analysis, than previously, to obtain 

more accurate and clinically informative results. In any image anal- 

ysis, however, the performance of myocardial motion tracking is 

essential in echocardiography. In clinical practice, the strains in 

the distinct layers across the myocardial wall are generally consid- 

ered for evaluating cardiac functions ( Voigt et al., 2015 ). In a recent 

study, the mid layer strain of myocardium was measured by spatial 

smoothing of the displacement field ( Michael et al., 2012 ). Tracking 

of arbitrarily-positioned points in the intramyocardium will be re- 

quired for more detailed analysis. 

Various tracking methods have been proposed so far 

( Smeulders et al., 2014 ). The Block Matching (BM) method is 
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one of the most classical tracking methods. This approach involves 

searching in a small window to match a target block in consec- 

utive images, and thus obtain the displacement vector d . In this 

framework Bohs et al. (1999) proposed a system to measure 2D 

velocities in real time using a Sum-Absolute-Difference (SAD) algo- 

rithm. Effort s have also been made to improve the accuracy of the 

BM method. Yeung et al. (1998) applied a Coarse-to-Fine strategy 

aiming to improve the robustness against the noise and capture 

the motion field details at the same time. Behar et al. (2004) pro- 

posed an algorithm which incorporates the SAD algorithm, optical 

flow method and an affine motion model to take account of the 

deformation of the myocardial wall. Duan et al. (2006) extended 

BM method to 3D echocardiography. In another approach, the 

gradient-based Optical Flow (OF) methods have been widely 

used. The basic premise is that the intensity of a material point 

does not change with time. Because this assumption is not ad- 

equate to give a unique solution of displacements, Horn and 

Schunck (1981) introduced a constraint to minimize the sum of 

the squares of the Laplacians of the two velocity components. 

Lucas and Kanade (1981) localized the computation of the OF 

in a small window in which the motion field is assumed to be 

constant. The Horn and Schunck method and the Lucas-Kanade 

method were assessed by Baraldi et al. (1996) . The Lucas-Kanade 

method was fully developed by Tomasi and Kanade (1991) and 

was verified by Shi and Tomasi (1994) . The Lucas-Kanade method 
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together with the work by Tomasi and Kanade is called the “KLT”

method. Based on these OF methods, various techniques have 

been proposed to improve the tracking accuracy such as the in- 

troduction of Smoothness Constraints to reduce the discontinuity 

of the motion field ( Nagel and Enkelmann, 1986; Weickert and 

Schnörr, 2001 ), Coarse-to-Fine strategies to track large displace- 

ments ( Anandan, 1989; Black and Anandan, 1996 ), affine motion to 

incorporate the deformation and rotation ( Maurice and Bertrand, 

1999; Behar et al., 2004; Sühling et al., 2005 ), preprocessing filters 

to reduce the noise ( Kusunose et al., 2014 ). Additional interesting 

work on the OF method can be found in ( Duan et al., 2005; 

Mukherjee et al., 2012 ). 

In the field of image processing, many image registration meth- 

ods have been proposed for overlapping two images ( Brown, 1992 ). 

Image registration methods have been divided into a “rigid” reg- 

istration method (only rotation and translation are considered) 

( Maintz and Viergever, 1998; Hill et al., 2001 ) and a “non-rigid”

registration method (besides the rotation and translation, defor- 

mation is also considered) ( Zitová and Flusser, 2003; Moder- 

sitzki, 2004; Crum et al., 2004 ). The non-rigid image registra- 

tion techniques first introduced by Broit (1981) and Bajcsy and 

Kova ̆ci ̆c (1989) have been widely applied to the analysis of my- 

ocardial motion. In non-rigid registration methods, by introduc- 

ing a set of control points and a deformation model, a reference 

image is deformed to match a target image. Because the expres- 

sion of the motion model is a key for non-rigid registration meth- 

ods, studies have used various basis functions ( Holden, 2008 ), such 

as polynomials, B-splines ( Unser, 1999; Ledesma-Carbayo et al., 

2005 ), thin-plate splines ( Goshtasby, 1988 ), radial basis functions 

( Fornefett et al., 1999 ), and wavelets ( Amit, 1994; Yoshida, 1998; 

Wu et al., 20 0 0 ). Kybic and Unser (2003) showed that B-spline de- 

formation is computationally more efficient than the other basis 

functions. Heyde et al. (2013) compared the BM method and non- 

rigid registration methods. Other comparative studies can be found 

in ( Zagorchev and Goshtasby, 2006; Craene et al., 2013; Jasaityte 

et al., 2013 ). 

Regardless of whether the method belongs to the tracking fam- 

ily or the image registration family, the deformation of the image is 

taken into account by a motion model. In this study, instead of pur- 

suing a new motion model, we introduce a technique developed in 

so-called computational mechanics. The most common technique 

is the finite element method (FEM) and we explored this method 

to find that the Meshfree Method (MFM) is more flexible and ro- 

bust for this application. MFM is one of the latest computational 

mechanics methods that approximates a displacement field by the 

superposition of the interpolation functions of nearby nodes with- 

out dividing the analysis domain into finite elements. By distribut- 

ing multiple MFM nodes in a ROI as tracking points, the displace- 

ment field in the ROI is determined according to the movements of 

the tracking points. The ROI can thus translate, rotate and deform 

within the ability of the given freedoms, i.e., twice the number of 

tracking points. By minimizing the dissimilarity between two con- 

secutive images, we can then obtain the movements of tracking 

points as the solution of the MFM nodal displacements. The resul- 

tant deformed ROI is used for further tracking. 

It is also noted that we are readily able to introduce stabiliza- 

tion into the deformation of the ROI by adding strain energy to 

the dissimilarity energy, aiming at better tracking of echo images 

including noise and perturbation. This process is nothing but the 

original function of the MFM and the constitutive equations de- 

veloped in Continuum Mechanics can be fully utilized. Namely, 

unlike conventional regularization techniques such as spatial av- 

erages, bending energy penalty ( Rueckert et al., 1999 ), Jacobian 

based constraint ( Kybic et al., 20 0 0; Rohlfing et al., 2003 ), curva- 

ture penalty term ( Fischer and Modersitzki, 2004 ) and some other 

non-derivative based methods ( Holden, 2008 ), the strain energy 

based stabilization term can suppress only abnormal strains by 

properly selecting a nonlinear potential function. To the best of 

our knowledge, this is the first paper that has introduced Compu- 

tational Mechanics based nonlinear strain energy for stabilization. 

We will see the effectiveness later in this paper. 

This paper focuses on the investigation of the basic character- 

istics of the proposed method and for this purpose two numerical 

phantoms are introduced firstly. These are both donut-shaped, but 

the first simply consists of randomly distributed scatterers, while 

the second is its simulated ultrasound B-mode image including ar- 

tificial noise. Under such controlled circumstances the proposed 

method is closely compared with other methods. Secondly, to ex- 

amine the potential of our method in more practical situation, we 

applied the method to real ultrasound images of a physical phan- 

tom in a benchmark database ( Tobon-Gomez et al., 2013 ). 

Section 2 describes the proposed method, and the performance 

is examined in Section 3 . Section 4 discusses the tracking results, 

and Section 5 concludes the work. The detailed formulae and pro- 

tocols are placed in Appendices. 

2. Method 

2.1. The RMTP method 

The optical flow methods estimate the myocardial motion by 

minimizing dissimilarities of a sequence of images. Here, it is as- 

sumed that the intensity of a material point remains the same dur- 

ing the motion to the next frame. Denoting the intensity functions 

of two consecutive frames by I ( x ) and J ( x ), the assumption can be 

written as: 

J( x + d (x )) − I(x ) = 0 , (1) 

where x is a 2D position vector, and d ( x ) is a 2D displacement vec- 

tor of a material point x . The KLT method further assumes the dis- 

placement vector d ( x ) to be constant within a small square region 

of the ROI, and tries to minimize the following residual to solve for 

d : 

ε(d ) = 

∑ 

x ∈ W 

(J(x + d ) − I(x )) 2 , (2) 

where W denotes all the pixels in the ROI. This equation may be 

interpreted as reflecting a tracking point at the center of the ROI 

which represents the translational movement of the whole ROI for 

the minimization. 

In Fig. 1 , the middle row schematically shows a square ROI 

boundary which rotates and deforms with the tissue and there- 

fore with the image. The upper row depicts the notion of pattern 

matching in the KLT method where only parallel translations are 

allowed. The difference between the two images in the middle row 

is made intentionally large to obtain a perspective on the limita- 

tions of the KLT method; in practice the difference for a single step 

is much smaller. However, the same type of error in pattern match- 

ing always occurs even if the difference is small, and accumulates 

from step to step resulting in a significant error as shown later. 

The limitation of the above pattern matching in the KLT method 

stems from the fact that there is only one tracking point to repre- 

sent the ROI. However, if we allow multiple tracking points for an 

ROI, we can introduce controllable displacement fields including 

parallel translations, rotations and deformations as follows. Note 

that affine transformations have already been applied to the KLT 

method as mentioned earlier ( Maurice and Bertrand, 1999; Sühling 

et al., 2005 ), but the gradient of the resultant displacement field is 

limited to being constant by its nature. We will discuss this point 

together with the image registration methods later. 

In the Finite Element Method (FEM), which has been widely 

used in structural analysis, the displacement field is interpolated 
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