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a b s t r a c t

Time-lapse microscopy is an important technique to study the dynamics of various biological processes.
The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmen-
tation and tracking methods. These methods are often limited to certain cell morphologies and/or cell
stainings. In this paper, we present an automated segmentation and tracking framework that does not
have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely
on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal
image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99%
and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from
single-cell tracking based on a nearest-neighbor-approach, detection of cell–cell interactions and split-
ting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation
and tracking framework was applied to synthetic as well as experimental datasets with varying cell den-
sities implying different numbers of cell–cell interactions. We established a validation framework to
measure the performance of our tracking technique. The cell tracking accuracy was found to be >99%
for all datasets indicating a high accuracy for connecting the detected cells between different time points.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cell migration plays an important role in many physiological
processes, including embryonic morphogenesis, tissue repair,
mitosis, and immune response, as well as pathological processes,
such as carcinogenesis, tumor growth, and metastasis (Ridley
et al., 2003). Specific cues, such as chemokines and growth factors,
can induce the direction of migration (chemotaxis) and/or the
migration activity (chemokinesis). It is important to identify key
regulatory mechanisms and to understand the molecular basis
underlying cell migration. This is a challenging problem but may
eventually reveal potential targets for pharmacological interven-
tions in diseases involving cell migration.

Image-based systems biology includes live cell microscopy as a
powerful approach to study the behavior of cells in biological

systems. Imaging of biological systems combined with the auto-
mated analysis for functional, dynamical, and morphological
aspects is required to increase our understanding of complex pro-
cesses. In the context of cell migration, this typically includes
tracking and quantification of large numbers of cells and events.
To date, manual cell tracking is still a common method of choice
for analyzing cells within these time-lapse movies. However, in
addition to being very labor-intensive and time consuming, results
of manual cell tracking can be subjective. User-dependent estima-
tions of cell positions (usually cell centroids) and the selection of
subsets of representative cells has a high impact on the tracking
outcome and the interpretation of cell migration patterns (Huth
et al., 2010). Additionally, complex features, such as cell morphol-
ogy and contour features, can hardly be captured and quantified by
manual measurements. Therefore, automated segmentation and
tracking algorithms are urgently needed to overcome the limita-
tions of manual cell tracking and to enable high-throughput anal-
ysis of microscopy time-lapse images. These algorithms face
several challenges including low signal-to-noise ratios, dynamic
cell morphologies, high cell densities, cluster formation, or cells
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moving in and out of the frame or focal plane. These issues require
sophisticated segmentation and tracking methods.

Here, we present a fully automated multi-target segmentation
and tracking framework for non-rigid objects, which is applied
for migration studies of unstained polymorphonuclear neutrophils
(PMNs). PMNs have a central role in innate immunity and repre-
sent 50–70% of circulating leukocytes in humans. They are essen-
tial for defending the host against invading microorganisms.
Several mechanisms enable PMNs to eliminate pathogens intra-
and extracellularly including phagocytosis, degranulation, release
of antimicrobial substances, or formation of neutrophil extracellu-
lar traps (NETs) (Kolaczkowska and Kubes, 2013; Nathan, 2006;
Brinkmann et al., 2004; Véronique et al., 2000).

The segmentation and tracking framework involves the detec-
tion of unstained cells with the peculiar feature to exhibit a highly
variable morphology. The non-rigidity of cells is challenging for
accurate tracking techniques, since shape or size features cannot
be used to correctly identify cells between consecutive frames.
We developed a segmentation technique that detects moving
objects based on local and temporal gray level variations of the
images. This approach allows detection of cells independent of
their morphology and image illumination. Our tracking method
first creates segments of cell trajectories (tracklets) for time frames
where no interactions with other cells occur. Here, we assume a
random motion model to extract cell migration patterns in an
objective fashion. Then, cell–cell interactions in form of touchings
and cluster formation are analyzed and the position of individual
cells are estimated to subsequently extend the cell tracks. Finally,
tracklets are globally combined allowing for gaps between them
to handle segmentation and classification errors.

To evaluate the performance of the presented automated seg-
mentation and tracking algorithm we constructed a framework
of performance measures. Beside standard features, like the num-
ber of false positive and false negative tracks, we also evaluate
track fragmentations and tracklet merging errors. We test and
evaluate the segmentation and tracking technique on synthetic
and experimental data, where the latter are compared to the
results of a manual analysis.

2. Related work

This section aims to give an overview about common segmen-
tation and tracking techniques for microscopy images and videos.
We outline advantages and disadvantages for the discussed image
processing approaches. Cell segmentation methods for microscopy
and medical images are reviewed by Meijering (2012), Pham et al.
(2000), and Rittscher (2010), while cell tracking methods are
reviewed by Chenouard et al. (2009b), Meijering et al. (2006),
Meijering et al. (2009), Meijering et al. (2012), Rittscher (2010),
Yilmaz et al. (2006). Chenouard et al. (2014) and Maška et al.
(2014) provide benchmark datasets and a comparison of different
tracking algorithms for fluorescence microscopy data.

2.1. Segmentation

A large variety of image processing techniques exists for the
segmentation of individual non-stained cells in microscopy
images. The presumably simplest kind of approaches are back-
ground subtraction, using a mean or median image computed from
the whole set of images, and global thresholding. These techniques
produce satisfactory results on images with cells that have signif-
icantly different intensity values compared to the background.
However, they are very sensitive to noise and to spatial as well
as temporal illumination changes. More enhanced techniques pro-
vided by adaptive thresholding (local thresholding) or by Otsu’s

method (Otsu, 1975) increase the segmentation accuracy, but
these methods suffer from shortcomings as far as relationships
among neighboring pixels are not included.

Edge detection methods based on the gradient of the image
(first order derivative), e.g., Sobel, Scharr, etc., are used to detect
cell boundaries. Methods involving the second derivative (LoG,
DoH, DoG) are used to detect blobs and the advantage of these lin-
ear filtering techniques is that they are fast and easy to compute.
However, the disadvantage of these methods is that they typically
require additional post-processing steps. Edge thinning and linking
is for example done with the Canny edge detector (Canny, 1986).
Non-linear filtering utilized in morphological operations strongly
relies on cell morphology and shape and requires knowledge about
these features as prior assumptions. Its application potential for
non-rigid objects is therefore very limited.

Deformable models for image segmentation are based on para-
metric curves in 2D (active contours, snakes) or surfaces in 3D
(active meshes) that minimize a predefined energy functional,
which includes image-based and shape-based energy terms (Kass
et al., 1988). This method requires knowledge about the image
content and object shapes to taylor the energy-terms to the spe-
cific segmentation problem. Additionally, the positioning of active
contours required for initialization is often done manually and the
number of deformable models has to be pre-estimated from the
number of objects in the image.

Machine learning approaches for cell segmentation can be cate-
gorized into two groups: supervised and unsupervised methods.
Supervised methods use features of a learning dataset with known
labels to generate inter-class discriminators (e.g., k-nearest-
neighbor classifier, Parzen Window, Support Vector Machines, deci-
sion trees, etc.). Nunez-Iglesias et al. (2013) demonstrate hierarchi-
cal agglomerative clustering from superpixels in neural tissue.
Zaritsky et al. (2011) use a cascade of support vector machines
(SVMs) including textural features in the context of wound healing
and scatter assays. Unsupervised learning methods usually cluster
data dependent on pre-defined features recursively and recompute
parameters for each class until stopping criteria are reached. This
includes k-means, fuzzy c-means algorithm, expectation maximiza-
tion (EM), etc. Permuter et al. (2006) demonstrate image segmenta-
tion with a Gaussian mixture model (GMM) learned from colored
texture and structure features. Liang et al. (2010) use a GMM
trained with image intensities to detect particles in fluorescence
images. For the performance of learning methods and classification
the selection of appropriate image and object features is crucial.

2.2. Tracking

Tools for automated tracking of cells and particles have been
developed since the early 1980s (Meijering et al., 2006). The devel-
opment of robust tracking algorithms faces new challenges by
ongoing advances in microscopy and imaging technologies. To
date, most biological applications require their own sophisticated
tracking techniques that differ, for example, with regard to the
assumptions about the underlying motion model or noise
parameters.

Automated cell tracking techniques can be divided into two
major groups: (1) deterministic approaches and (2) probabilistic
approaches. Deterministic approaches can be further divided into
(1.1) independent segmentation followed by frame-to-frame asso-
ciation and (1.2) time-dependent evolution of models.

Deterministic approaches that segment images first and build
associations between the data points of consecutive frames in a
second step require sophisticated approaches for object linking.
The nearest-neighbor-association (NNA) approach links objects
dependent on a distance measure that is e.g., based on distances
between cell centroids. Including other cell features, such as color
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