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a b s t r a c t

We propose a new analysis framework to utilize the full information of brain functional networks for
computing the mean of a set of brain functional networks and embedding brain functional networks into
a low-dimensional space in which traditional regression and classification analyses can be easily
employed. For this, we first represent the brain functional network by a symmetric positive matrix com-
puted using sparse inverse covariance estimation. We then impose a Log-Euclidean Riemannian manifold
structure on brain functional networks whose norm gives a convenient and practical way to define a
mean. Finally, based on the fact that the computation of linear operations can be done in the tangent
space of this Riemannian manifold, we adopt Locally Linear Embedding (LLE) to the Log-Euclidean
Riemannian manifold space in order to embed the brain functional networks into a low-dimensional
space. We show that the integration of the Log-Euclidean manifold with LLE provides more efficient
and succinct representation of the functional network and facilitates regression analysis, such as ridge
regression, on the brain functional network to more accurately predict age when compared to that of
the Euclidean space of functional networks with LLE. Interestingly, using the Log-Euclidean analysis
framework, we demonstrate the integration and segregation of cortical–subcortical networks as well
as among the salience, executive, and emotional networks across lifespan.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The brain at rest is not idle but shows continuous, spontaneous
fluctuations in activity among spatially distributed but functionally
connected regions. Resting state functional magnetic resonance
imaging (rs-fMRI) has been recognized as a useful technique to
investigate complex patterns of brain functional organization at
rest. It has been increasingly used in studies of normal aging and
neurodegenerative diseases (Venkataraman et al., 2013;
Deligianni et al., 2011; Bluhm et al., 2008; Wang et al., 2010;
Tomasi and Volkow, 2012) as it is unbiased to confounds associ-
ated with task-based fMRI, such as task difficulty and performance.

A large body of rs-fMRI aging studies have employed graph the-
ory to characterize ‘‘small-world’’ properties of the brain across
lifespan, meaning that many networks have both local clustering
of connections and a short path length between any two brain

regions (Achard and Bullmore, 2007; Bullmore and Sporns, 2012;
Meunier et al., 2009). However, a decrease of both global and local
network efficiency was shown in older adults in comparison to
young adults (Achard and Bullmore, 2007). Using graph theory,
Newman’s modularity metric can be defined to measure the
strength of division of the brain functional network into modules.
Previous studies (e.g., (Meunier et al., 2009)) revealed that normal
brain aging was associated with changes in modularity of sparse
functional networks. In particular, both young and older brain net-
works demonstrated significantly non-random modularity but the
older brain showed a reduced number of intermodular connections
to frontal modular regions and an increased number of connector
nodes in posterior and central modules (Meunier et al., 2009). In
addition to the aforementioned metrics that characterize the topol-
ogy of the brain functional network, researchers also investigated
age-related effects on the connectivity of individual structures
and showed the age decline of major functional connectivity hubs
in the ‘default-mode’ network (DMN) (Damoiseaux et al., 2008a;
Bluhm et al., 2008; Wang et al., 2010; Tomasi and Volkow, 2012).
A reduction of the connectivity between the anterior cingulate
cortex and bilateral insular in salience network in older adults
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suggested an age-related deficits in decision-making and sensory
integration (Onoda et al., 2012; Seeley et al., 2007). Decreased
functional connectivity in the left premotor area and right cingu-
late motor cortex was found in older adults in comparison to young
adults (Wu et al., 2007).

Recently, support vector machine (SVM) has been employed on
rs-fMRI for the prediction of individual brain maturity, in which a
subset of elements in the functional connectivity matrix derived
from rs-fMRI were used as features (Dosenbach et al., 2010).
Wang et al. (2012) assumed that variations of the functional net-
works are driven by variations in a small subset of unknown
parameters. A supervised locality preserving projection (LPP) algo-
rithm (He et al., 2005) was employed to learn a low-dimensional
representation of brain development from many individuals at dif-
ferent ages and support vector regression (SVR) models were
designed in this low-dimensional space for making continuously
valued predictions about the functional development levels of indi-
vidual brains. However, arithmetic operations on the matrices of
brain functional networks, such as non-convex Euclidean opera-
tions, could result in undesirable properties of the matrices as dis-
cussed below.

Brain function network modeling has thus far largely based on
(partial) correlation analysis of rs-fMRI time series data among
brain regions, suggesting that the brain functional network can
be fully characterized by a symmetric positive semi-definite
matrix. Ideally, if the brain parcellated regions, served as network
nodes, are functionally distinct from each other, then the func-
tional network can be represented by a symmetric positive definite
(SPD) matrix. When considering a SPD matrix as an element in a
finite-dimensional Euclidean space, arithmetic operations, such
as mean, does not satisfy certain desirable properties. For example,
the linear average of SPD matrices is not the inverse of the linear
average of the inverses of the SPD matrices. There have been great
efforts on carrying out computations with SPD matrices in a curved
space, called a manifold, in medical image analysis (Fillard et al.,
2007; Arsigny et al., 2006; Pennec et al., 2006). In the manifold set-
ting, a SPD matrix can be represented as an element in a vector
space in which the mean and variance of SPD matrices can be eas-
ily computed with certain desirable properties. For instance,
Arsigny et al. (2007) proposed a Riemannian framework on SPD
matrices, which leads to the computation of the mean of SPD
matrices while preserving the aforementioned desirable proper-
ties. It has been widely used to study the mean and variation of dif-
fusion tensor imaging of the brain (Fillard et al., 2007). This
manifold setting of SPD has been recently employed to investigate
brain functional-connectivity difference in post-stroke patients
(Varoquaux et al., 2010), which demonstrates an increase in statis-
tical power in detecting functional disconnections in the patients
when compared to the Euclidean setting of SPD. Manifold learning
analysis was also widely used for studying anatomical shapes (e.g.
(Aljabar et al., 2011)).

Here, we adopt the Riemannian framework of SPD matrices
introduced by Arsigny et al. (2007) and propose a new analysis
framework to utilize the full information of brain functional net-
works for computing the mean of a set of brain functional net-
works and embedding brain functional networks into a low-
dimensional space in which regression and classification analyses
can be easily employed. For this, we first represent the brain func-
tional network by a SPD matrix computed using sparse inverse
covariance estimation (Huang et al., 2010). Huang et al. (2010)
employed the sparse inverse covariance estimation approach to
compute functional connectivity matrices at different sparsity
levels and detected differences of functional connectivity among
mild cognitive impairment patients, Alzheimer’s patients and nor-
mal controls. We then impose a Log-Euclidean Riemannian mani-
fold structure on brain functional networks whose norm gives a

convenient and practical way to define a mean. The metric in the
Log-Euclidean Riemannian manifold leads to easy and efficient
computation of the mean of SPD matrices. This is different from
the work in Varoquaux et al. (2010), where affine-invariant metric
in the Riemannian manifold of SPD matrices is used and involves
intensive computation of matrix inverses, square roots, logarithms,
and exponentials. Varoquaux et al. (2010) proposed a matrix vari-
ate probabilistic model suitable for inter-subject comparison of
functional connectivity matrices on the affine-invariant manifold
of SPD matrices, leading to a new algorithm for principled compar-
ison of connectivity coefficients between pairs of regions. Finally,
based on the fact that the computation of linear operations can
be done in the tangent space of this Riemannian manifold, we
adopt Locally Linear Embedding (LLE) (Roweis and Saul, 2000) to
the Log-Euclidean Riemannian manifold space for embedding the
brain functional networks into a low-dimensional space. Using this
framework, we show the evolution of the brain functional network
across lifespan and the comparison between the Log-Euclidean and
Euclidean spaces of brain functional networks in terms of the pre-
diction accuracy of biological age.

2. Methods

2.1. Subjects

This study was approved by the National University of Singa-
pore Institutional Review Board. All participants provided written
informed consent prior to the participation. Two-hundreds and
fourteen healthy Singaporean Chinese volunteers aged 21–80 years
old were recruited (males: 93; females: 121) for this study. The
participants were recruited via advertisements and screened for
eligibility through a phone interview prior to an onsite visit. Volun-
teers with the following conditions were excluded: (1) major ill-
nesses/surgery (heart, brain, kidney, lung surgery); (2)
neurological or psychiatric disorders; (3) learning disability or
attention deficit; (4) head injury with loss of consciousness; (5)
non-removable metal objects on/in the body such as cardiac pace-
maker; (8) diabetes or obesity; (9) a Mini-Mental State Examina-
tion (MMSE) score of less than 24 (Ng et al., 2007). This study
only included 178 right-handed subjects (age: 22–79 years; males:
71; females: 107) who completed structural and function MRI. The
distribution of age among these subjects is shown in Fig. 1.

2.2. MRI acquisition and analysis

MRI was performed on a 3T Siemens Magnetom Trio Tim scan-
ner using a 32-channel head coil at Clinical Imaging Research Cen-
tre of the National University of Singapore. The image protocols
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Fig. 1. Age distribution among 178 subjects.
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