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A B S T R A C T

Existing blind stereoscopic 3D (S3D) image quality assessment (IQA) metrics usually require supervised learning
methods to predict S3D image quality, which limits their applicability in practice. In this paper, we propose an
unsupervised blind S3D IQA metric that utilizes the joint spatial and frequency representations of visual per-
ception. The metric proposed in this work was inspired by the binocular visual mechanism; furthermore, it is
unsupervised and does not require subject-rated samples for training. To be more specific, first, the various
binocular quality-aware features in spatial and frequency domains are extracted from the monocular and cy-
clopean views of natural S3D image patches. Subsequently, these features are utilized to establish a pristine
multivariate Gaussian (MVG) model to characterize natural S3D image regularities. Finally, with the learned
MVG model, the final quality score for a distorted S3D image can be yielded using a Bhattacharyya-like distance.
Our experimental results illustrate that, compared to related existing metrics, the devised metric achieves
competitive prediction performance.

1. Introduction

Stereoscopic 3D (S3D) image processing techniques such as S3D
scene capture, S3D compression, S3D transmission, S3D rendering, S3D
vision enhancement, and S3D display are the focus of current research
efforts [1–3]. Each processing stage is highly susceptible to being
contaminated with various distortion artifacts. Therefore, approaches
to precisely and faithfully predict the perceptual quality of distorted
S3D content are in urgent demand and essential for S3D applications
and services [4–7]. Human beings are the ultimate assessors of S3D
image quality; however, their judgment is time-consuming, incon-
venient, and cumbersome, and cannot be used in real-time online op-
erations. Hence, objective assessment metrics offer many advantages
such as low cost and easy operation, and can be embedded in S3D visual
information processing systems. Therefore, substantial efforts have
been made to develop and improve objective S3D IQA metrics. These
efforts are a significant step towards mimicking the integral mechan-
isms of the monocular and binocular visual systems, and accurately and
automatically predicting S3D image quality. Generally, existing objec-
tive S3D IQA metrics can fall into three distinct categories: full re-
ference (FR), reduced reference (RR), and no reference (NR)/blind
metrics, according to the availability of the original S3D images [8–13].
In this research, the discussion is focused on blind metrics.

Recently, numerous blind IQA metrics for conventional 2D images
have been emphatically studied in detail, and can be categorized into
two types [14,15]. The metrics in the first category extract effective
quality-predictive representations from distorted images, and then
learn a regression function using those representations. Therefore, dif-
ferent quality-predictive feature extraction schemes and machine
learning methods lead to different blind metrics. The processes in the
feature extraction stage are based on the following observations: (1) the
image is properly normalized or transferred to some transform domain
(e.g., DCT [14,15], wavelet [16,17], Gabor [18,19], shearlet [20,21], or
spatial [22–24]), and (2) local descriptors can be modeled by various
feature distributions. In the machine learning stage, different regression
techniques such as support vector regression (SVR) [14,16,23], general
regression neural networks (GRNN) [25], deep learning (DL) [26,27], k-
nearest-neighbor (KNN) [28], and multiple kernel learning (MKL) [29]
can be applied to learn the mapping function from feature distributions,
in order to predict the visual’s perceptual quality. The second category
of blind metrics operates without requiring subject-rated images. For
instance, in [30], Xue et al. presented a quality-aware clustering (QAC)
metric that learns a set of quality-predictive centroids that are used as a
dictionary to calculate the patches’ quality in each image, and infer the
overall quality score of the image. In [31], Li et al. presented a novel
training-free blind IQA metric using several perceptually relevant and
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complementary quality-predictive representations. In [32], Mittal et al.
presented the natural image quality evaluator (NIQE), which does not
need training with human-scored distorted images. Inspired by NIQE, in
[33], Zhang et al. developed a blind IQA metric by integrating natural-
image-feature statistics derived from multiple cues, without any
transcendental knowledge of distortion types or image contents. In
[34], Wu et al. developed the local pattern statistics index (LPSI), a
highly efficient blind IQA metric that does not utilize a training process
but exhibits surprisingly effective generalization capability. In [35],
based on the basic concept of information maximization, Gu et al.
proposed a training-free blind IQA metric for contrast distortion.
However, the aforementioned 2D IQA metrics may not always be ef-
fective in measuring the quality of distorted S3D images (it is more
challenging when an S3D image consists of two dichoptic views with
varying quality levels), because the quality-aware representations in
these metrics cannot sufficiently mimic the natural binocular visual
mechanism.

Because blind S3D IQA is relatively less mature, only limited pro-
gress has been made in this research field. In [36], Chen et al. presented
a cyclopean view-based blind S3D IQA metric that uses only blind 2D
IQA metrics to assess disparity/depth information and cyclopean views.
In [37,38], Gu et al. presented a blind S3D IQA metric that extracted 3D
visual factors related to the nonlinear additive model, saliency-based
parallax compensation, and ocular dominance model. In [39], Ryu and
Sohn developed a blind S3D IQA method for distorted S3D images by
employing the binocular visual perception model; however, the final
quality score only included the perceptual quality scores of both views’
blurriness and blockiness. In [40], Akhter et al. presented a blind S3D
IQA method that independently extracts natural scene statistics (NSS)
quality-aware features from depth/disparity information and both
views; subsequently, a regression function is utilized to obtain the
overall quality score via those NSS quality-aware features. In [41], Su
et al. developed a blind S3D image naturalness quality method, which
uses both correlated and bivariate NSS models to acquire the oriented
structure information in distorted S3D images. In our previous work
[42], we developed a blind quality metric that uses dictionary learning
and machine learning methods to predict S3D images. Other relevant
works can be found in [43–45]. However, the above-mentioned blind
S3D IQA metrics are supervised methods. Specifically, they need a large
number of subject-rated samples to learn the regression function; this
diminishes their generalization capability, thereby limiting their prac-
tical applicability [46]. Therefore, there is an urgent need to develop
unsupervised blind S3D IQA metrics. However, while the aim of un-
supervised blind S3D IQA is quite intriguing, devising a practical
method to achieve it is a significant challenge, owing to the fact that
relevant information may be unavailable.

To overcome the shortcomings of previous methods, in this work we
propose an unsupervised blind S3D IQA metric that exclusively utilizes
computable deviations from statistics obtained in natural S3D images,
without the need for training with human-rated distorted S3D images.
To the best of our knowledge, this work is the first to introduce the joint
spatial and frequency representations of binocular visual perception
into the field of blind S3D IQA. The major contributions of this work
include the following:

(1) We adopt joint spatial and frequency representations of binocular
visual perception, which more comprehensively capture distortion
artifacts.

(2) We exploit two different weighting schemes to simulate the bino-
cular visual mechanism:
(i) A generalized eye-weighting model is used to weight monocular

features in order to obtain binocular features.
(ii) A gain-contrast control theory model is used as a weighting

scheme for the cyclopean view.
(3) A pristine multivariate Gaussian (MVG) model is established by

using the joint spatial and frequency representations to obtain the

final S3D perception, in place of machine learning methods.

Our experimental results demonstrate the superior performance of
our metric.

The remainder of this work is organized as follows. Section 2 dis-
cusses theories related to the binocular visual mechanism. Section 3
illustrates the proposed S3D IQA metric. In Section 4, experimental
results and comparisons are given and discussed. Finally, Section 5
concludes the work.

2. Binocular visual mechanism

The binocular visual mechanism is a complex visual process and
plays an important role in depth perception. Owing to recent advances
in visual cognition theories and neural science, numerous visual psy-
chophysical and physiological discoveries have enabled us to more
deeply understand the binocular visual mechanism; these findings are
beneficial to the development of effective and efficacious S3D IQA
metrics. Here we briefly describe recent findings on the binocular visual
mechanism as they relate to this work.

(1) The generalized eye-weighting model: Unlike the conventional 2D
visual mechanism, the binocular visual mechanism can perceive the
discrepancy between two dichoptic views at the same visual retinal
position, owing to two significant binocular interactions—binocular
fusion and rivalry [47]. In binocular fusion interaction, each of two
eyes provides its own nuanced visual content, and a single visual
perception is obtained [48]. In particular, binocular rivalry inter-
action occurs when the two eyes perceive two mismatched views at
the same visual retinal position in 3D space [49]. The main goal of
S3D IQA is to characterize the binocular quality-aware features by
considering binocular fusion and rivalry. In this work, the com-
bining of binocular quality-aware features is based on Bayesian
theory [50], in that the binocular quality-aware features can be
modeled by a hybrid combination of monocular quality-aware
feature distributions
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In Eq. (1), Il and
⌢
Ir are the left view and the disparity-compensated

right representation, respectively, and ϑ is the perceived quality.
Clearly, it is essentially a generalized eye-weighting model for bino-
cular features combination, and can be rewritten as

= +
⌢
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where Flr denotes the binocular features, f(·) denotes the monocular
features extraction function (this function will be discussed in Section 3,
and wl and wr can be regarded as the visual-based weights that re-
present the binocular fusion and binocular rivalry processes. In this
study, the weights are calculated as

= + ∈w e e e ξ l r( ) { , }ξ ξ l r (3)

where el and er respectively denote the local energy variance of the left
and right views of S3D images to simulate binocular stimulus strength.

(2) The gain-contrast control theory model: In a binocular lightness
combination, the images observed by the left and right retinas are
combined to generate a single perceived “cyclopean” view (a bi-
nocularly fused percept) [51,52]. Recently, a number of studies
have examined how two slightly different monocular views fuse to a
combined view using disparity-based scene geometry and depth
perception [53,54]. We use the gain-contrast control theory model
to explain the perception of binocular lightness combinations and to
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