Accepted Manuscript

Regular paper

Energy Detection based Spectrum Sensing for Gamma Shadowed $\alpha-\eta-\mu$ and $\alpha-\kappa-\mu$ Fading Channels

Sandeep Kumar, Manpreet Kaur, Nitesh Kumar Singh, Kuldeep Singh, Pushpraj Singh Chauhan

PII: S1434-8411(18)30179-1

DOI: https://doi.org/10.1016/j.aeue.2018.05.031

Reference: AEUE 52352

To appear in: International Journal of Electronics and Communi-

cations

Received Date: 22 January 2018 Accepted Date: 27 May 2018

Please cite this article as: S. Kumar, M. Kaur, N. Kumar Singh, K. Singh, P. Singh Chauhan, Energy Detection based Spectrum Sensing for Gamma Shadowed $\alpha - \eta - \mu$ and $\alpha - \kappa - \mu$ Fading Channels, *International Journal of Electronics and Communications* (2018), doi: https://doi.org/10.1016/j.aeue.2018.05.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Energy Detection based Spectrum Sensing for Gamma Shadowed $\alpha-\eta-\mu$ and $\alpha-\kappa-\mu$ Fading Channels

¹Sandeep Kumar *, ²Manpreet Kaur, ³Nitesh Kumar Singh, ⁴Kuldeep Singh, ⁵Pushpraj Singh Chauhan

^{1,2,4} Central Research Laboratory, Bharat Electronics Limited, Ghaziabad, Uttar Pradesh, India

³Department of Electronics & Communication Engineering, National Institute of Technology,

Hamirpur, India

⁵Department of Electronics and Communication, GBPEC, Pauri, Uttarakhand, India

¹sann.kaushik@gmail.com, ²manpreettiet@gmail.com, ³niteshksmgs@gmail.com,

4kuldeep.er@gmail.com, 5puspraj.chauhan@gmail.com

Abstract: In 5G communication, spectrum sensing is a viable technology to use the available spectrum efficiently. Energy detection based spectrum sensing is known to be very simple as far as the implementation of hardware circuitry is concerned. The performance of Energy Detector (ED) over $\alpha - \eta - \mu/gamma$ and $\alpha - \kappa - \mu/gamma$ composite fading channels is obtained using numerical approximation. Unified analytic expressions for the average probability of detection and average area under the receiver operating characteristic curves (AUC) are derived for both the channels using Gaussian-Laguerre method. The produced results are very generic in the sense that the performance already derived for generalized distributions such as $\alpha-\eta-\mu$, $\alpha-\kappa-\mu$, $\eta \mu$ /gamma, α - μ /gamma and their inclusive ones can be easily evaluated using the these results. The impact of the system parameters on the performance of ED is studied in terms of complimentary receiver operating characteristics (CROC) and AUC.

Keywords: Cognitive radio; energy detection; generalized fading; AUC; CROC curve

Subject classification codes: wireless and optical communication

Download English Version:

https://daneshyari.com/en/article/6878953

Download Persian Version:

https://daneshyari.com/article/6878953

<u>Daneshyari.com</u>