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A B S T R A C T

This contribution investigates the nonlinear dynamics of a model of a 4D Hopfield neural networks (HNNs) with
a nonlinear synaptic weight. The investigations show that the proposed HNNs model possesses three equilibrium
points (the origin and two nonzero equilibrium points) which are always unstable for the set of synaptic weights
matrix used to analyze the equilibria stability. Numerical simulations, carried out in terms of bifurcation dia-
grams, Lyapunov exponents graph, phase portraits and frequency spectra, are used to highlight the rich and
complex phenomena exhibited by the model. These rich nonlinear dynamic behaviors include period doubling
bifurcation, chaos, periodic window, antimonotonicity (i.e. concurrent creation and annihilation of periodic
orbits) and coexistence of asymmetric self-excited attractors (e.g. coexistence of two and three disconnected
periodic and chaotic attractors). Finally, PSpice simulations are used to confirm the results of the theoretical
analysis.

1. Introduction

In biology, the human brain is the central organ of the nervous
system. It controls most of activities of the body, processing, in-
tegrating, and coordinating the information it receives from the sensory
organs. The brain dynamics is generally studied based on mathematical
equations, usually obtained from artificial neural networks models
[1–3]. Among these neural networks, Hopfield neural networks stand
amongst the simplest paradigms. This is why in neurocomputing,
Hopfield type neural network has an important use [4]. Since it is re-
latively simple, it can describe brain dynamics and provide a model for
better understanding human activity and memory. In the brain dy-
namics, the signal generated is called electroencephalograms (EEGs)
seems to have uncertain features, but there are some hidden samples in
the signals [5]. Moreover, these signals are very sensitive to any
changes in the brain’s synaptic weights [6]. In this way, the brain dy-
namics is related to butterfly effect. It has been presented in the work of
Panahi and collaborators [3] that, sometimes the neural activity in the
brain can change from chaotic to periodic. The authors have also pre-
sented that, the chaotic behavior correspond to the normal state of the
brain while the periodic state correspond to the pathological behavior

of the brain named epileptic seizure.
In order to have more information on the brain’s dynamics, several

works have been carried out on the analyses of HNNs, and results have
indicated some complex nonlinear phenomena such as chaos including
single scroll and double scroll attractors, transient chaotic behaviors,
hyperchaos, hidden attractors, just to name a few [3–13]. In particular,
Bao and collaborators [13], remove the self-connection synaptic weight
of the second neuron to simplify the HNNs connection topology pre-
sented in [9]. The investigations of Bao highlighted the complex phe-
nomenon of the coexistence of attractors for the same set of synaptic
weight matrix. Their results have been validated experimentally. It
should be noted that, the phenomenon of the coexistence of attractors
observed in HNNs have already been identified by Kengne and colla-
borators in several classes of nonlinear dynamical systems such as the
Chua’s system, Jerk systems, Duffing–Holmes type chaotic oscillators,
memristor-based Shinriki's circuit and so on [14–21]. From these
works, up to six disconnected solutions are captured in some Jerk
systems as well as the phenomenon of antimonotonicity. It is then, of
interest to see if a 4D HNNs with a nonlinear synaptic weight, model-
ling complex biological system such as brain dynamics is able to ex-
perience such type of nonlinear dynamics.
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Inspired by these previous works related to the dynamics of the
Hopfield neural networks and complex nonlinear dynamical behaviors
already found in some systems reported in the literature, we propose in
this paper a mathematical model of a Hopfield neural networks ob-
tained by introducing a nonlinear self-synaptic weight connection in the
first neuron. The main objective of this paper is to show that the new
Hopfield neural networks exhibits richer (e.g. antimonotonicity and
coexistence of at least three asymmetric disconnected attractors) dy-
namics compared to previously published ones. Consequently, it gives
an idea on the origin of epileptic fit which can be viewed as coexistence
of normal and pathological state of the patient. Thus, the scientific
contributions of this work can be summarized in the following lines:

(a) To carry out a systematic analysis of the proposed 4D HNNs and
explain the chaos mechanism.

(b) To define the set of the synaptic weight matrix in which the model
experience multiple coexisting attractors, hysteretic dynamics, and
parallel bifurcations.

(c) To carry out Pspice simulations of the proposed HNNs to support
the theoretical predictions.

The remaining parts of this scientific contribution are organized as
follows. In Section 2, we propose and describe the novel 4D Hopfield
neural network model. Analyses are carried out in terms of equilibria
stability and existence of attractors. In Section 3, traditional nonlinear
diagnostic tools such as bifurcation diagrams, graphs of Lyapunov ex-
ponents, phase portraits, and frequency spectra are exploited to high-
light complex phenomena such as the coexistence of bifurcations, the
coexistence of multiple asymmetric attractors and antimonotonicity. In
Section 4, Pspice simulations are carried out to support our investiga-
tions. Finally, some concluding remarks and proposals for future works
are given in Section 5.

2. 4D Hopfield neural networks with a nonlinear synaptic weight

2.1. 2.1. Mathematical expression of the proposed model

Hopfield neural networks (HNNs) are one among several artificial
neural Networks which are generally used to describe brain dynamics.
In such type of neuron, the circuit equation can be described as

∑= − + +
=

C dx
dt

x
R

w x Itanh( )i
i i

i j

n

ij j i
1 (1)

where xi is a state variable corresponding to the voltage across the
capacitor Ci, Ri is a resistor showing the membrane resistance between
the inside and outside of the neuron, Ii is the input bias current. The
matrix =W wij is a ×n n synaptic weight matrix showing the strength

of connections between the i-th and j-th neurons and xtanh( )j is the
neuron activation function indicating the voltage input from the j-th
neuron. In neuroscience, synaptic weight refers to the strength or am-
plitude of a connection between two nodes, which corresponding in
biology to the amount of influence the firing of one neuron has on
another [7]. In this paper, we consider that, =C 1i , =R 1i , =I 0i and

=n 0. When analog computer of the HNNs is computerized, the sy-
naptic weight wij neuron is a resistor. Based on these various hy-
potheses, we propose a 4DHopfield neural networks a nonlinear sy-
naptic weight with connection topology presented in Fig. 1. From the
general connection topology, the synaptic weight matrix is given as
follow:
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where = −f x w a b x( ) ( tanh( ))4 11 4 with =a 1 and =b 0.2 represents the
nonlinear synaptic weight of the model. From this nonlinearity, it is
observed that, the synaptic weight ′w11 of the first neuron is affected by
the intrinsic value of the fourth neuron. Thus, this configuration can
enable the brain’s dynamics to be more complex. From all the above
consideration, the smooth nonlinear fourth order differential equations
describing the proposed 4-neuronsHopfield neural networks can be
taken in a dimensionless form as:
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with respect to Eq. (3), there are two synaptic weights from which bi-
furcations can be investigated.

2.2. Basic dynamics of system

Face to the coordinate’s transformation
→ − − − −x x x x x x x x( , , , ) ( , , , )1 2 3 4 1 2 3 4 the proposed HNN is variable then,

it exhibits asymmetric attractors and the possibility of coexistence of
attractors related to the symmetry of the model is to exclude. The vo-
lume of contraction rate of the introduced HNNs is given by:
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Since, =a 1, =b 0.2 and− < <x1 tanh( ¯ ) 1i for all xi =i( 1, ...,4) with
an appropriate choice of synaptic weight w11 our model can be dis-
sipative thus, can support attractors. We recall that, the dissipation
property of a system guarantees the presence of bounded global at-
tractor and analytical indication of the global attractor in the phase
space [22,23]. Also, the confinement of the chaotic trajectories of
system (3) is justified. The confinement of the model of 4D-HNNs using
the approach described in [24,25] is as follow:
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Its corresponding time derivative is given as
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Let us consider that
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Eq. (5) can then be rewritten as

Fig. 1. Topological connection of a 4D Hopfield Neural Networks (HNNs).
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