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A B S T R A C T

Hyperbolic-type equilibrium requires that all the real parts of the corresponding eigenvalues are nonzero. In this
paper, a three-dimensional autonomous chaotic system is introduced, and interestingly we find that one non-
hyperbolic equilibrium point and two hyperbolic equilibrium points coexist in this system, which, according to
the information we know, has not been previously reported. We first reveal the basic dynamics of the system
through analyzing phase portrait, frequency spectrum, Poincaré map, bifurcation diagram and Lyapunov ex-
ponent. Then, based on the idea of the improved modular technology, we build an analog circuit to realize the
chaotic system, which further verifies the theoretical results. Finally, we design a simple feedback controller on
account of Lyapunov asymptotic stability theory, to globally suppress the system to its equilibrium points.

1. Introduction

The equilibrium point of dynamical system is defined as the con-
stant solution of its differential equation. The study on the equilibrium’s
property of dynamical system has well served to explore the type of
system [1–3], the shape of attractor [4–7], the amplitude variation of
signal [8,9], and the practical engineering application [10–14]. If all
the real parts of the corresponding eigenvalues are nonzero, the equi-
librium is called to be hyperbolic [15]. For three-dimensional autono-
mous system, the hyperbolic equilibrium can be the type of stable or
unstable saddle, node, saddle-focus or node-focus. Since the famous
Lorenz model was found in 1963 [16], a number of Lorenz-type chaotic
systems have been reported with two saddle-foci and one saddle
[17–23]. They are hyperbolic-type system with nonzero real parts of
characteristic roots, and the Šil’nikov homoclinic/heteroclinic theory is
one commonly accepted criterion for proving the existence of chaos
[24,25]. What’s more, these systems can generate two-scroll attractors
alternatively swirling around the unstable saddle-focuses, which also
imply the fact that the distribution of scrolls is determined by the
number of saddle-focuses. The subsequent investigation along this fact
naturally extended to construct (multi-directional) multi-scroll attrac-
tors through increase in the number of hyperbolic-type equilibrium

points with index-2, which can be realized by substituting the original
nonlinear term with cubic function [26], polynomial function [27],
multi-segment quadratic function [28], saw-tooth function [29], hys-
teresis function [30] and stair function [31].

At the same time, other few chaotic systems with non-hyperbolic
equilibria, defined as holding eigenvalues with a real part equal to zero
[32], are formulated and studied. For example, Li and Ou reported a
chaotic system originated from Lorenz system and obtained the stability
character of its non-hyperbolic equilibria by using the center manifold
theorem [33]. Liu and Yang also investigated the condition of asymp-
totically stable of the non-hyperbolic equilibrium for a Lorenz-like
chaotic system [34]. Wei and Yang constructed a new chaotic system
coexistence with saddle-foci, non-hyperbolic and stable equilibria by
varying one of system parameters [35]. As was found by Sprott [36,37],
the saddle-focus equilibria doesn’t exist in the non-hyperbolic type of
chaotic system. Therefore, it’s difficult for the Šil’nikov theorem to
detect the chaos in these abnormal chaotic systems of non-hyperbolic
type.

Motivated by the above discussion, this paper reports our recent
work of a three-dimensional autonomous chaotic system which, parti-
cularly interesting, holds three uncommon equilibrium points: a zero
equilibrium point of non-hyperbolic type and two symmetrical
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equilibrium points of hyperbolic type. The finding is striking since it
reveals that hyperbolic type and non-hyperbolic type equilibrium
points can coexist in the same chaotic system, which, according to the
information we know, has not been previously reported. And the
finding will also constitute a stimulus to explore more undiscovered
dynamics feature of chaotic system. What’s more, the proposed system
will hold more complex topological form than stable manifold, unstable
manifold and central manifold, compared to non-hyperbolic system,
consequently it will enhance the potential application in chaotic cryp-
tography and secure communication. To understand the complex be-
havior of the system, basic dynamical properties, such as phase portrait,
frequency spectrum, Poincaré map, bifurcation diagram and Lyapunov
exponent are studied. And to further verify the theoretical results, we
build an analog circuit to realize the chaotic system based on the idea of
improved modular technology. Finally, to globally suppress the system
to its equilibrium points, we design a feedback control scheme based on
the theory of Lyapunov asymptotic stability. This scheme is simple with
only one linear controller yet impactful to suppress the system to its
different equilibrium points. Consequently, the scheme is practicable in
actual implementation, which is further illustrated by numerical si-
mulations.

2. Model and dynamics of the reported system

2.1. The system model

Our reported dynamical system is depicted in the following form
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In system (1), x1, x2, x3 are the state variables, a is the system
parameter with positive value. It’s known that system (1) is invariant
under the transformation ↦ − −x x x x x x( , , ) ( , , )1 2 3 1 2 3 , thus we conclude
that system (1) has reflection symmetry about x3-axis, and the non-
trivial trajectories of x1 and x2 of system (1) hold a twin direction.

When the only parameter a is equal to 2 and initial selection is set as
(x1(0), x2(0), x3(0))= (0.2, 0.1, 0.1), the three Lyapunov exponents of
system (1) are calculated as (0.210312, 0.004775,−6.435465) by the
orthogonal method with the simulation time T=1000. As we can de-
duce that system (1) is chaotic since it holds one positive Lyapunov
exponent. And the fractional Kaplan-Yorke dimension is subsequently
derived to be 2.0319, which also confirms the chaotic behavior. The
corresponding phase diagrams further verify the chaotic property for
the reported system, as depicted in Fig. 1.

In the frequency domain, we depict an apparently continuous
broadband spectrum 20log|x2| of system (1) in Fig. 2(a). While in the
time domain, we visualize the Poincaré map on x1–x3 plane with x2= 0
in Fig. 2(b). It is clear that the Poincaré map is composed of virtually
symmetrical branches and several nearly symmetrical twigs. What’s
more, the attractor structure is displayed in the Poincaré map.

2.2. Analysis of equilibrium points

By solving the equation set − + =x x x 01 2 3
2 , − =ax x x 02 1 3 ,

− + =x x x 03
3

1 2 , we find three equilibrium points of system (1) as
E (0, 0, 0)0 , E a a a( , , )1

5/6 1/6 1/3 , − −E a a a( , , )2
5/6 1/6 1/3 .

When selecting a=2, we obtain the equilibrium points and the
corresponding eigenvalues, as follows:

E0(0, 0, 0): λ1=−1, λ2= 0, λ3= 2.
E1(1.7818, 1.1225, 1.2599): λ1= 0.7826+ 1.7214i, λ2= 0.7826–
1.7214i, λ3=−5.3272.
E2(−1.7818,−1.1225, 1.2599): λ1= 0.7826+1.7214i, λ2=
0.7826–1.7214i, λ3=−5.3272.

Thus, equilibrium point E0 is non-hyperbolic since the characteristic
value λ2 equals to zero. However, equilibrium points E1 and E2 are
unstable saddle-focus of index 2. And since all the real parts of the
corresponding eigenvalues are nonzero, the two nonzero equilibrium
points are hyperbolic. This finding reveals the unusual fact that hy-
perbolic type and non-hyperbolic type equilibrium points can simulta-
neously exist in one chaotic system.

One might get the impression that the solutions of system (1) are
actually bounded, and it has a globally attracting chaotic attractor.
However, if one chooses x1(0)= x3(0)= 0 and x2(0)= c≠ 0, then the
exact solution of (1) is x1(t)= x3(t)= 0 and x2(t)= ceat. Hence the x2
axis is actually an unstable manifold for (1) when a > 0. As a result, if
initial conditions are close to this axis, solution bound will increase.
Hence, for the equilibrium point E0, if one chooses a g > 0, then there
always exists initial conditions for which the inequality to determine g
is violated. In other words, the stability result for E0 is only valid for a
set of initial conditions, hence is local in nature.

2.3. Dynamics switch by parameter variation

To reveal the process of dynamics switch for this system, we con-
sider the parameter range 1≤ a≤ 2.6, and the corresponding bi-
furcation diagram and spectrum of Lyapunov exponents by numerical
calculation are depicted in Fig. 3. Preliminary analysis shows that the
dynamical behaviors of system (1) switch among chaotic orbit and
periodic orbit connected by inverse period-doubling bifurcation, with
the increase of parameter a. Concretely, there exist five obvious peri-
odic windows embedded in the chaotic region, with parameter a be-
longing to [1.195, 1.24], [1.547, 1.573], [1.686, 1.824], [2.152, 2.372]
and [2.551, 2.6], respectively. As illustrated examples, we depict the
periodic motion when a equal to 1.24 and 2.16 respective, seen in
Fig. 4.

3. Circuit implementation of the reported system

From the point of practical applications, the hardware realization of
chaotic models is an important topic, especially realized by using
commercially common electronic components [38–40]. Therefore, we
will design an electronic circuit to realize the reported chaotic system in
this section, by using the dimensionless state equations and the im-
proved module-based technique [41].

First, to ensure the dynamic range of state variables determined by
saturation value of active devices, and to guarantee the electronic cir-
cuit working effectively and capture the wave easily, the variable-scale
reduction and time-scale transformation should be taken into account.
Thus, when letting the proportional compression factors be (10, 2, 1) for
variables (x1, x2, x3), and letting the time-scale transformation factor be
100, we derive the resulted state equation of system (1) with a=2, as
below
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Secondly, the improved module-based circuit diagram from state
equation (2) can be derived by differential to integral conversion, as
depicted in Fig. 5. In this design, we choose the operational amplifier
LF353 chip and analog multiplier AD633 chip. It is worth mentioning
that the AD633 may hold nonideal memory effect in actual im-
plementation [42]. In the course of our implementation, the working
condition is considered to be ideal for avoiding the ranges in which
nonideal behavior is problematic. Thus, we obtain the circuit state
equation from Fig. 5, as follows
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