Accepted Manuscript

Regular paper

MOSFET-Only Filter Design Automation Based on Polynomial Regression with Exemplary Circuits

Deniz Ozenli, Ersin Alaybeyoglu, Hakan Kuntman, Oguzhan Cicekoglu

PII: S1434-8411(17)31550-9

DOI: https://doi.org/10.1016/j.aeue.2017.11.014

Reference: AEUE 52130

To appear in: International Journal of Electronics and Communi-

cations

Received Date: 23 June 2017

Accepted Date: 15 November 2017

Please cite this article as: D. Ozenli, E. Alaybeyoglu, H. Kuntman, O. Cicekoglu, MOSFET-Only Filter Design Automation Based on Polynomial Regression with Exemplary Circuits, *International Journal of Electronics and Communications* (2017), doi: https://doi.org/10.1016/j.aeue.2017.11.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

MOSFET-Only Filter Design Automation Based on Polynomial Regression with Exemplary Circuits

Deniz Ozenli^{1,2}, Ersin Alaybeyoglu^{1,3}, Hakan Kuntman¹, Oguzhan Cicekoglu⁴

¹Department of Electronics and Communications Eng., Istanbul Technical University, Istanbul, 34467, Turkey.

²Department of Electrical-Electronics Eng., Marmara University, Istanbul, 34722, Turkey.

³Department of Electrical-Electronics Eng., Bartin University, Bartin, 74100, Turkey.

⁴Department of Electrical-Electronics Eng., Bogazici University, Istanbul, 34342, Turkey.

Abstract: In this work, a novel design automation method is presented for easy construction of MOSFET-Only or MOSFET-C filters. In contrast to previous works in the literature, the proposed algorithm is simple since it uses polynomial fitting models obtained from SPICE data in order to reformulate small signal parameters and some DC characteristics of MOSFET's. Polynomial regressive models facilitate to interact between design constraints (power, area, speed, pole frequency etc.) and design variables (operating voltages, currents and device dimensions). In this regard, two novel agile MOSFET-Only filters produced with the proposed automation process are presented in order to qualify the automation flow. The produced filters are simulated in LT-SPICE and CADENCE-SPECTRE environment by using 0.18μm TSMC technology. These agile filters can easily be operated for a wide range of encrypted communications or very high frequency applications. In addition, it is shown that there is a good agreement between proposed design automation flow and simulations.

Keywords-- MOSFET-Only, MOSFET-C, polynomial regression, convex optimization, posynomial, monomial, current mode, analog filter design

1-Introduction

Research on the analog design automation emerges on troublesome manual design cycles in the analog circuit design. Manual circuit-sizing in analog design is a time consuming process since non-idealities in a practical circuit results serious deviations from theoretical

Download English Version:

https://daneshyari.com/en/article/6879635

Download Persian Version:

https://daneshyari.com/article/6879635

<u>Daneshyari.com</u>