Accepted Manuscript

Reducing the Reconfiguration Cost of Flow Tables in Energy-Efficient Software Defined Networks

Jaime Galán-Jiménez, Marco Polverini, Antonio Cianfrani

PII: S0140-3664(17)31255-0

DOI: 10.1016/j.comcom.2018.07.022

Reference: COMCOM 5741

To appear in: Computer Communications

Received date: 29 November 2017

Revised date: 7 May 2018 Accepted date: 19 July 2018

Please cite this article as: Jaime Galán-Jiménez, Marco Polverini, Antonio Cianfrani, Reducing the Reconfiguration Cost of Flow Tables in Energy-Efficient Software Defined Networks, *Computer Communications* (2018), doi: 10.1016/j.comcom.2018.07.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Reducing the Reconfiguration Cost of Flow Tables in Energy-Efficient Software Defined Networks

Jaime Galán-Jiménez¹, Marco Polverini², Antonio Cianfrani²

 Department of Computer Systems and Telematics Engineering. University of Extremadura. Spain. jaime@unex.es
DIET Department. University of Rome "Sapienza". Rome. Italy. [marco.polverini,antonio.cianfrani]@uniroma1.it

Abstract

Software-Defined Networking (SDN) is a new networking paradigm that is attracting the attention of the research community due to the flexibility provided by the separation between data and control planes. In particular, the SDN scenario introduces new aspects to be considered when formulating the energy-aware routing problem, such as the reconfiguration cost of flow tables. In this paper we introduce and investigate the problem of minimizing the power consumption of an SDN network while also reducing the number of rules that have to be modified in the flow tables of SDN nodes. An optimization problem formulation and a GA (Genetic Algorithm) based heuristic are presented to tackle this two-fold problem. The performance analysis, carried out over different realistic network topologies, highlights that GA is able to increase the power saving opportunities up to the 20% more than other energy-aware routing solutions proposed in the literature, while reducing the number of rules that have to be modified up to 100 times.

 ${\it Keywords:}~$ Software-Defined Networks, Energy-Aware Routing, Genetic Algorithm.

1. Introduction

The reduction of the energy consumed by the Internet is one of the hot topics in networking research area during recent years [1]. The most promising approaches to improve the energy efficiency of ISP networks are based on the activation of low-power states for network devices during off peak traffic hours [2, 3]; the overall network routing is able to satisfy traffic requests and QoS constraints, with a reduced number of active devices, i.e., nodes and/or links.

Recently, the emerging Software-Defined Networking (SDN) paradigm is also gaining attention on energy efficiency issues [4], especially for data center environments [5] or hybrid IP/SDN scenarios [6]. The presence of a logically centralized device which is responsible for all the control decisions in the network increases the opportunity for the deployment of energy-aware solutions;

Preprint submitted to Elsevier

19th July 2018

Download English Version:

https://daneshyari.com/en/article/6879908

Download Persian Version:

https://daneshyari.com/article/6879908

<u>Daneshyari.com</u>