
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

The show must go on: Fundamental data plane connectivity services for
dependable SDNs

Michael Borokhovicha, Clement Raultb, Liron Schiffc, Stefan Schmid⁎,d,e

a AT&T Labs - Research, USA
b TU Berlin, Department of Telecommunication Systems, Marchstrasse 23, D - 10587 Berlin, Germany
cGuardiCore Labs, Israel
dUniversity of Vienna, Austria
e Aalborg University, Denmark

A R T I C L E I N F O

Keywords:
Local Fast Failover
Software-Defined Networking (SDN)
OpenFlow
Algorithms
Connectivity

A B S T R A C T

Software-defined network (SDN) architectures raise the question of how to deal with situations where the in-
direction via the control plane is not fast enough or not possible. In order to provide a high availability, con-
nectivity, and robustness, dependable SDNs must support basic functionality also in the data plane. In particular,
SDNs should implement functionality for inband network traversals, e.g., to find failover paths in the presence
link failures. This paper shows that robust inband network traversal schemes for dependable SDNs are feasible,
and presents three fundamentally different mechanisms: simple stateless mechanisms, efficient mechanisms
based on packet tagging, and mechanisms based on dynamic state at the switches. We show how these me-
chanisms can be implemented in today’s SDNs and discuss different applications.

1. Introduction

1.1. Motivation

Software-Defined Network (SDN) architectures distinguish between
the data plane, consisting of the forwarding switches, and the control
plane, consisting of one or multiple software controllers. Out-sourcing
and consolidating the control over the data plane elements to a software
controller simplifies the network management, and introduces new
flexibilities as well as optimization opportunities, for instance, in terms
of traffic engineering [1,2].

However, indirections via the control plane can come at a cost, both
in terms of communication overhead as well as latency. Indeed, the
reaction time to data plane events in the control plane can be orders of
magnitude slower compared to a direct reaction in the network [3]:
especially for the recovery of failures, a slow reaction is problematic.
Worse, the indirection via the control plane may not even be possible: a
controller may be temporarily or permanently unreachable, e.g., due to
a network partition, a computer crash, or even due to a malicious attack
[4].

This is problematic today, as computer networks have become a
critical infrastructure and should provide high availability. Over the
last years, researchers and practitioners have put much effort into the

design of more reliable and available SDN control planes. In these de-
signs, redundant (and possibly also geographically distributed) con-
trollers manage the network in a coordinated fashion [5–9].

Despite these efforts to improve the control plane performance,
redundant controllers alone are not sufficient to ensure the availability
of SDNs. First, the additional latency incurred by the redirection via the
controller may still be too high, even if the controller is nearby.
Moreover, if implemented inband, even with a distributed control
plane, we face a bootstrap problem [10,11]: the communication
channels between switches and controllers must be established and
maintained via the data plane.

Accordingly, we in this paper argue that highly available and reli-
able Software-Defined Networks require basic connectivity services in
the data plane. In particular, the data plane should offer functionality
for inband network traversals or fail-safe routing: the ability to compute
alternative paths after failures (a.k.a. failover). Moreover, it should
support connectivity checks.

1.2. Challenges of inband mechanisms

We are not the first to observe the benefits of inband mechanisms
[12–14]. Indeed, many modern computer networks already include
primitives to support the implementation of local fast failover

https://doi.org/10.1016/j.comcom.2017.12.004
Received 3 December 2016; Received in revised form 15 July 2017; Accepted 11 December 2017

⁎ Corresponding author at: University of Vienna, Währinger Straße 29, 1090 Vienna, Austria.
E-mail address: stefan_schmid@univie.ac.at (S. Schmid).

Computer Communications 116 (2018) 172–183

Available online 13 December 2017
0140-3664/ © 2017 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/01403664
https://www.elsevier.com/locate/comcom
https://doi.org/10.1016/j.comcom.2017.12.004
https://doi.org/10.1016/j.comcom.2017.12.004
mailto:stefan_schmid@univie.ac.at
https://doi.org/10.1016/j.comcom.2017.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2017.12.004&domain=pdf


mechanisms: mechanisms to handle the failures in the data plane di-
rectly.

For instance, in datacenters, Equal-Cost Multi-Path (ECMP) routing
is used to automatically failover to another shortest path; in wide-area
networks, networks based on Multiprotocol Label Switching (MPLS) use
Fast Reroute to deal with data plane failures [3]. In the SDN context,
conditional rules whose forwarding behavior depends on the local state
of the switch, have been introduced in recent OpenFlow versions
[12,15]. Future OpenFlow versions are likely to include more func-
tionality or even support maintaining dynamic network state, see for
example the initiatives in the context of P4 [16] and OpenState [17].

However, implementing network traversals or computing failover
paths is challenging, even with the possibility to define OpenFlow local
fast failover rules. Mainly for two reasons:

1) The OpenFlow failover rules must be pre-computed and installed
ahead of time, i.e., without knowledge of the actual failures.

2) Failover rules can only depend on the local state of the switch, i.e.,
the local link failures. A local rerouting decision may not be optimal,
especially in the presence of additional failures occuring in other
parts of the network.

1.3. The case for robust inband traversals

A local fast failover mechanism must essentially be able to perform
a network traversal for failsafe routing: it should find a route from source
to destination, despite failures. Such robust inband network traversals
may also be a useful data plane service, e.g., to check network con-
nectivity.

Ideally, a network traveral provides a maximal robustness, in the
sense that any packet originating at s and destined to d will reach its
destination independently of the location and number of link failures,
as long as s and d belong to the same physically connected component.

Little is known today about the feasibility and efficiency of im-
plementing robust inband network travesals in software-defined net-
works, the topic addressed in this paper. In particular, robust routing
algorithms known from other types of networks such as MPLS, are
sometimes impossible to implement without additional functionality at
the switch, or inefficient (e.g., require large packet headers), and hence
do not scale to large networks.

1.4. Our contributions

This paper studies the feasibility and efficiency of inband network
traversals, a fundamental building block for more advanced data plane
services of dependable SDNs, such as robust routing and connectivity
testing.

We present a comprehensive approach, exploring conceptually dif-
ferent solutions which provide different tradeoffs in terms of overhead
and performance:

1) Stateless mechanisms: We show that it is feasible to implement simple
yet very robust data plane traversals using today’s OpenFlow pro-
tocol. In particular, we present a simple stateless scheme which is
maximally robust: a route from source to destination is found,
whenever this is possible. The disadvantage of this scheme are the
potentially high and unpredictable route lengths.

2) Tagging mechanisms: We present more efficient robust traversals in a
more advanced network model, using packet tagging, as it is also
supported in OpenFlow. Our OpenFlow model and approach may be
of independent interest, as it introduces an interesting new graph
exploration problem.

3) Stateful mechanisms: Given the benefits of maintaining state in the
packets, we further explore means to introduce state in an OpenFlow
network. We show that, maybe suprisingly, using packet tagging is
not the only way state can be introduced in OpenFlow traversals. In

fact, it is possible to implement simple state machines on the
switches, using the standard OpenFlow protocol, and we will refer to
the corresponding state as inband registers. Moreover, we present an
interesting and novel mechanism to store state in the hosts attached
to the network, in a completely transparent manner, using MAC
addresses to encode paths.

Finally, we discuss applications for a robust inband network tra-
versal, including robust routing and efficient connectivity checks.

1.5. Organization

The remainder of this paper is organized as follows. Section 2 in-
troduces the necessary background on SDN and OpenFlow. In Section 3,
we present and discuss different robust traversal algorithms, using
packet tagging, and in Section 5 we show how to introduce state in
switches and hosts. In Section 6, we discuss applications. After re-
viewing related work in Section 7, we conclude with a discussion in
Section 8.

2. Background and model

2.1. SDN and OpenFlow

Our work is motivated by the Software-Defined Networking para-
digm, and especially OpenFlow, the predominant SDN protocol today.
This section provides the necessary background on OpenFlow (focusing
on the commonly used version 1.3). OpenFlow is based on a match-
action concept: OpenFlow switches store rules (installed by the con-
troller) consisting of a match and an action part. For example, an action
can define a port to which the matched packet should be forwarded or
change a header field (e.g., add or change a tag).

A new flow entry can either be installed proactively or reactively. In
the reactive case, when a packet of a flow arrives at a switch and there
is no matching rule, the table miss entry will be used. By default, upon a
table miss, a packet is forwarded to the controller. Given such a packet-
in event, the controller will create a new rule and push the new flow
entry to this switch. The switch will then apply this rule to the packet.
In the proactive case, flow entries are pushed to the switches ahead of
time.

Each OpenFlow switch stores one or multiple flow tables, each of
which contains a set of rules (a.k.a. flow entries). Flow tables form a
pipeline, and flow entries are ordered according to priorities: A packet
arriving at a switch is first checked by the rule of the highest priority in
table 0: the fields of the data packet are compared with the match fields
of that rule, and if they fit, some instructions (the actions) are executed;
subsequently, lower priority rules are checked. Depending on the out-
come of the table 0 processing, the packet may be sent to additional
flow tables in the pipeline. Concretely, instructions can be used to de-
fine additional tables to be visited (goto instruction), to modify the set of
to-be-applied actions (either by appending, deleting, or modifying ac-
tions), or immediately apply some actions to the packet. A meta-data
field can be used to exchange information between tables. Part of the
header can be inserted or removed from a packet via pushing and
popping of labels and tags, e.g., of MPLS and Virtual Local Area
Network (VLAN) fields.

In general, a packet can be matched against any of its header fields,
and fields can be wildcarded and sometimes bitmasked (e.g., the meta-
data field is maskable). If no rule matches, the packet is dropped. The
use of multiple flow tables (compared to a single one) can simplify
management and also improve performance.

Our robust traversal algorithms make use of Group Tables, and
especially the Fast Failover (FF) concept introduced in OpenFlow 1.3.
The group table consists of group entries, and each group entry contains
one or more action buckets. For the group entries of the fast failover
type, each bucket is associated with a specific port (or group), and only

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

173



Download English Version:

https://daneshyari.com/en/article/6880152

Download Persian Version:

https://daneshyari.com/article/6880152

Daneshyari.com

https://daneshyari.com/en/article/6880152
https://daneshyari.com/article/6880152
https://daneshyari.com

