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A B S T R A C T

In this work, ternary and quaternary dividing wall column (DWC) configurations for the separation of a
multicomponent feed stream from a novel thermochemical lignocellulosic biomass to butanol process
are designed, modeled and assessed. The goal is to separate the feed into four major products, with a key
product being a biobutanol rich stream. Due to the complexity of DWC models, a shortcut modeling
approach based on the minimum energy mountain method (also called the “Vmin diagram method”) is
used to determine good initial values for the decision variables for the rigorous simulation of the DWC
configurations. Furthermore, each DWC configuration is optimized to minimize the total annualized cost
with the use of a derivative free algorithm coupled with a process simulator. The results show that the
quaternary DWC configuration achieves up to 31% energy savings, and 15% capital savings in comparison
to a conventional distillation sequence, and is thus a better option for implementation in the biofuel
process.

ã 2015 Elsevier B.V. All rights reserved.

1. Introduction

As a result of global efforts to reduce emissions related to fossil
fuel consumption, there has been a shift of focus to produce fuels
from biomass. For example, the contribution of biofuels to total
road-transport fuel demand was 3% in 2013 and is estimated to
grow to 8% by 2035 [1]. However, to encourage further increase in
the uptake of biofuels, production costs have to be reduced. One
way to address this challenge is to reduce biofuel processing costs
by employing cutting edge process intensification technologies
such as dividing wall columns (DWC).

Since its first industrial application in 1985 by BASF, there have
been more than one hundred DWCs implemented in industry,
highlighting its increasing popularity [2], with past research
showing that DWCs can reduce the investment and energy
consumption of a multicomponent distillation process by up to
30% in comparison to conventional distillation sequences [3–5].

Though DWC technology initially found wide application for
distillation of zeotropic mixtures, its use has been further extended

to other areas such as extractive distillation [6,7], azeotropic
distillation [7,8] and reactive distillation [7]. Also critical to this
uptake of DWCs is the fact that questions surrounding the
controllability and operability of 3-product and 4-product DWCs
have largely been addressed [4,9–12].

One important biofuel production process which may
potentially benefit from the application of DWC technology is
biobutanol production. This is because biobutanol, a gasoline
substitute, is gathering increasing attention due to its advantages
over bioethanol [13,14]. Recently, Okoli and Adams [15] showed
that the fuel can be produced at a cost of $0.83/L using a novel
thermochemical process. That process used a train of conven-
tional distillation columns in the separation section to separate
an eleven component feed into four product blends (including a
fuel-grade biobutanol product), and consumed 10% of the total
energy and 8% of the total direct costs of the process. However,
these energy and capital costs of the separation section can
potentially be improved by utilizing DWCs for biobutanol
recovery instead of conventional distillation columns, leading
to a reduction in production costs of the process and thus have a
significant impact in improving the competitiveness of biobuta-
nol as a gasoline replacement. This application of DWC
technology has not been previously investigated for biobutanol
recovery from a thermochemical process, and is an interesting
area of research as past research has demonstrated the benefits
of DWC applications to bioethanol, bioDME and biodiesel
production processes [16,17].

Abbreviations: DWC, dividing wall columns; GA, genetic algorithm; HK, heavy
key; LK, light key; MESH, material equilibrium summation and heat; MINLP, Mixed
Integer Nonlinear Programming; NRTL, non random two liquid; PSO, particle swarm
optimization; TAC, total annualized cost; VBA, Visual Basic for Applications; VLE,
vapor liquid equilibrium; Vmin, minimum energy mountain.
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One major challenge in the research of DWC applications is
their design. In commercial chemical process simulators the
modeling of a DWC can be a difficult task as there are no custom
DWC blocks. Methods identified from literature have made use of
multiple columns in process simulators to represent different
sections of the DWC [18,19]. Another challenge is the large number
of internal column specifications needed for a DWC. This
complexity means that computational difficulties should be
avoided by using appropriate short-cut methods to determine
initial estimates for the variables required for rigorous simulations.
Once these variables have been estimated, rigorous simulations
based on tray-by-tray MESH (material, equilibrium, summation
and heat) equations can be implemented in the process simulation
software. One such short-cut method is the minimum energy
mountain method (also called the “Vmin diagram method”). The
Vmin diagram method is a distillation column design tool that can
be adapted and used to obtain good estimates for initializing
rigorous DWC simulations. It provides a graphical visualization of
the minimum energy required for separation of a multicomponent
zeotropic feed as a function of the feed properties [20]. The
minimum energy is represented by the normalized vapor flow in
the top section of the column, with the highest peak representing
the minimum theoretical energy required for separation. The
concept of the Vmin diagram was introduced by Halvorsen and
Skogestad of the Norwegian University of Science and Technology
(NTNU) in a series of papers in 2003 [20–22]. The method was
developed based on Underwood’s equations, and requires only
input feed details such as feed flowrate (F), composition (z) and
feed quality (q) to estimate the minimum vapor flow in the top
section of the column (VT), and distillate (D) at infinite number of
trays for desired product recoveries. The method can also be used
to generate initial estimates for nonideal systems by using a

process simulator and a large number of trays, typically around
four times the minimum number of trays (Nmin) [20].

Outside NTNU, this method has only been applied to the design
of 4-product DWCs for multicomponent aromatics mixtures
[19,23] and Sun and Bi [24] to the conceptual design of 3-product
reactive DWCs. These papers demonstrated the efficacy of this
method. However, as the number of applications of this method is
limited, more independent validations are needed to demonstrate
its potential.

In process design, the comparison of different design options is
usually done based on identical criteria after an optimization has
been carried out. Classical methods for optimizing DWCs are based
on mathematical programming (which require derivative infor-
mation) and fall into a class of problems known as Mixed Integer
Nonlinear Programming (MINLP) problems. This is due to the
presence of discrete variables such as feed location, and number of
trays in different column sections, as well as the nonconvexity of
the MESH equations. Javaloyes-Antón et al. [25], reviewed the
application of MINLP formulations for the solutions of complex
distillation columns (including DWCs), and concluded that based
on the high nonlinearities of these formulations, as well as
sophisticated initialization techniques needed to obtain feasible
solutions (only local optima are guaranteed as the solutions are
highly dependent on the initialization points), these methods are
complex and suited only for those skilled enough to adapt them for
their own requirements.

An alternative, and easier to implement approach to these
methods is to leverage the use of commercial process simulators
and derivative-free or “black box” optimization algorithms. These
derivative-free algorithms are typically population based, wherein
the population contains individuals, with each individual repre-
senting a particular solution to the optimization problem. Once an
algorithm termination criterion has been reached the optimization
problem solution is chosen as that of the individual with the best
objective function value. The advantage of these algorithms over
derivative search methods is their ability to escape local optima
and infeasibility regions, as well as provide multiple feasible
solutions to account for real world considerations that are harder
to quantify by the designer in an optimization setting. However,
they are not able to guarantee that the solutions found are optimal.
Though derivative-based search methods can theoretically offer
local optimality guarantees, they are not easily amenable to highly
complex real world problems and might be unable to find solutions
which are as good as those obtained by derivative-free algorithms
[25,26]. Examples of these derivative-free algorithms include
genetic algorithms (GA), simulated annealing, particle swarm
optimization (PSO) among others. In-depth discussions about
these methods can be found in books, such as those written by
Gendreau and Potvin [27], and Kaveh [28].

As a result of these advantages of derivative-free optimization
algorithms over classical derivative search methods, the use of
derivative-free optimization algorithms coupled with process
simulators has found wide use in the literature for optimizing
complicated process systems [25]. Among many examples in
literature, Leboreiro and Acevedo [26] successfully demonstrated
the use of a modified GA interconnected with the Aspen Plus
process simulator to optimize complex distillation sequences
including a Petlyuk column. Pascall and Adams [29] made use of a
PSO algorithm connected to Aspen Dynamics to optimize a novel
semicontinuous system for the separation of DME from methanol
and water. In that work PSO was used to optimize the controller
tuning parameters of the system. The PSO algorithm coupled with
Aspen Hysys was used by Javaloyes-Antón et al. [25] for the
optimal design of conventional and complex distillation processes.
In their work, the PSO algorithm implemented in MATLAB handles
all the discrete variables such as the feed location and the number

Nomenclature

B Bottoms flow rate (kmol/hr)
BR Boilup ratios
D Distillate (kmol/hr)
Dia Column diameter (m)
f Annualization factor
F Feed flowrate (kmol/hr)
H Column height (m)
i Fractional interest rate per year
LB Liquid flow at the bottom of the column (kmol/hr)
LT Liquid flow at the top of the column (kmol/hr)
n Annualization period in years (yr)
Nfeed Tray number of feed location
Nj Number of trays in the jth section of the product

column
Nmin Minimum number of trays
NT Number of trays
q Feed quality, liquid fraction
Qcond Condenser duty (MW)
Qreb Reboiler duty (MW)
rL Liquid split ratio
rV Vapor split ratio
RR Reflux ratios
s Tray spacing (m)
Tcond Condenser temperature (�C)
Treb Reboiler temperature (�C)
VB Vapor flow at the bottom of the column (kmol/hr)
VT Vapor flow in the top section of the column (kmol/hr)
z Composition
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