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Abstract

In order to improve the performance of data reconciliation methods, an efficient Genetic algorithm (GA) for determining time delays has been
developed. Delays are identified by searching the maximum correlation among the process variables. The delay vector (DV) is integrated within
a dynamic data reconciliation (DDR) procedure based on Kalman filter through the measurements error model. The proposed approach can be
satisfactorily applied not only off-line but also on-line. It was firstly validated in a dynamic process with recycles and feedback control loops. Then,
the methodology was successfully applied to a highly non-linear and complex challenging control case study, the Tenessee Eastman benchmark
process, demonstrating its robustness in complex industrial problems. This case study required to implement an extended Kalman filter to deal
with the existing non-linearities.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Data reconciliation (DR) is a model-based filtering technique
that attempts to reduce the inconsistency between measured pro-
cess variables and a process model. Thus, by decreasing this
inconsistency, measurement errors are reduced and more accu-
rate process variable values are obtained, which then can be used
for process control and optimization. Nevertheless, the perfor-
mance of DR can be seriously affected by the presence of any
event that increases this inconsistency such as modeling errors,
gross-errors and/or delays in sampling data. In such situations,
an error in the estimation can be generated by forcing a matching
of the process model and measured signals that are incompatible.
To deal with the presence of gross-error(s) several approaches
have been presented in the literature [1], covering steady and
dynamic systems as well as different kinds of errors (e.g. bias,
process leak). However, less attention has been devoted to man-

Abbreviations: CPU, central processing unit; DR, data reconciliation; DDR,
dynamic data reconciliation; EKF, extended Kalman filter; GA, genetic algo-
rithm; KF, Kalman filter; PRD, process related delay; SRD, sensor related delay;
TDI, time delay identification

∗ Corresponding author. Tel.: +34 93 401 66 78; fax: +34 93 401 09 79.
E-mail address: Luis.Puigjaner@upc.edu (L. Puigjaner).

age situations in which delays are present. Since time delays
appear as a time variable, they introduce non-linearities even if
the process is a linear one.

Correlation measures have been previously used in order to
determine process delays. Wachs and Lewin [2] proposed an
algorithm that applies relative shifts between process signals
within a process data matrix in order to find out the position in
which the correlation among variables is maximum. The optimal
shifts are those that minimize the determinant of the associated
correlation matrix. Such mechanism was applied for improving
resolution of a PCA based fault diagnosis system. When the
number of process variables n is large or the maximum delay
dmax is high in terms of sampling time, exhaustive search of
the maximum correlation by direct data matrix manipulation
is impracticable due to the unmanageable combinatorial size (it
involves (dmax)n determinant calculations). Wachs and Lewin [2]
realized this problem and proposed a new algorithm that reduces
the problem size to dmax × s × (n − s), where s is the number of
inputs. However, this algorithm assumes that the output variables
are correlated among themselves with no delays present and that
the process inputs are independent.

Apart from such limitation, the reduced but exahustive
searching strategy maintained in the methodology, makes it
unsuitable for actual industrial problem involving continuous
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(not discrete) time delays. Since real industrial problems have to
deal with continuous operation times, such delays identification
methodology becomes infeasible in the on-line implementations
because of the CPU time limitations. In that sense, more effi-
cient and systematic approaches should be developed in order
to tackle with the real time delays identification. In this work
an efficient time delay identification (TDI) procedure based on
GA optimization is presented for determining all the existing
delays with respect to a reference process signal (e.g. the most
or the least delayed process signal). This information is then
introduced within the dynamic data reconciliation (DDR) pro-
cedure by means of the measurements error model. An academic
dynamic case study with recycles and a challenging industrial
control problem reported in the literature, the Tennessee East-
mant benchmark [3] case study have been selected to illustrate
the advantages of the DDR approach. The main goal of this work
is to properly combine DDR and TDI techniques in such a way
that data/model delay mismatches can be reduced as much as
possible.

2. Data reconciliation

DR is a technique that takes advantage of the redundancy
between the process model and the measurements model (Eq.
(1)). Therefore, the existence of both models is a prerequisite to
reconcile redundant measured data. The measurements model is
constructed by assigning to each one of the n measured process
variables a normal probability distribution around its true value.
In the absence of gross-errors the measurements model can be
written as:

ytk = y∗
tk

+ εtk , ytk ∈Rn (1)

where y is the n × 1 measurements vector, y* the n × 1 vector of
unknown true values, and ε stands for the n × 1 vector of random
measurement errors whose expected value is the null vector and
has a known positive definite variance matrix (measurements
are assumed to be independent).

Additional information must be introduced through the pro-
cess model equations (constraints). The process model is in
general represented by a set of differential equation constraints:

f

(
dŷtk

dt
, ŷtk , δ̂tk , θ̂tk

)
= 0, f ∈Rf (2)

algebraic equality constraints:

g(ŷtk , δ̂tk , θ̂tk ) = 0, g ∈Rg (3)

and inequality constraints:

h(ŷtk , �̂tk , �̂tk ) ≤ 0, h ∈Rh (4)

where ŷtk represents the values of the estimated vector at dis-
crete time tk and δ̂tk and θ̂tk are the p × 1 vector of estimated
unmeasured variables and the q × 1 vector of adjusted model
parameters at discrete time tk, respectively.

The adjustment of measurements in order to compensate ran-
dom errors usually leads to a constrained optimization problem.

In most applications, the objective function (OF) to be mini-
mized is a weighted least-squares of the differences from the
measured values subject to the process model constraints.

OF(y, ŷ, σ) =
K∑

tk=0

[ŷtk − ytk ]T
∑−1

[ŷtk − ytk ] (5)

where
∑

is a diagonal matrix
∑ = diag(σ2

1 , . . . , σ2
n) and σ2

i is
the variance of the ith measured variable.

Different approaches have been proposed to solve this opti-
mization problem [4,5]. If the process does not show high
non-linearities and no inequality constraints are present, Kalman
filter (KF) technique can be efficiently used [6].

2.1. Kalman filter

The Kalman filter (KF) is an efficient recursive filter which
estimates the state of a dynamic system from a series of incom-
plete and noisy measurements, assuming that the true current
state evolves from the previous one. The algorithm uses the
following state-space and measurements models, respectively:

xtk = Atkxtk−1 + Btkutk + wtk (6)

ytk = Htkxtk + vtk (7)

where tk represents a sample time, xtk is the nx dimensional
vector of state variables, utk the nu dimensional vector of manip-
ulated input variables and ytk is the ny dimensional vector of
measured variables. The state transition matrix Atk , the con-
trol gain matrix Btk and the observation matrix Htk are matrices
of an appropriate dimension and if their coefficients are time
independent the subscript tk can be dropped.

The Kalman filter assumes errors in the process model and
in the measured data. The process noise wtk represents errors
in the state transition model. This noise is assumed to be white,
with zero mean and a variance Q. vtk represents a measure-
ment noise with a variance R. Using process measurements, the
error covariance matrix Ptk/tk associated with the estimated state
vector x̂tk/tk is updated as follows:

Ptk/tk = (I − KtkHtk )Ptk/tk−1 (8)

where Ktk is the Kalman filter gain given by:

Ktk = Ptk/tk−1H
T
tk

(HtkPtk/tk−1H
T
tk

+ Rtk )
−1

(9)

Then, the process expected measurements and the model current
state estimation can be evaluated by means of Eqs. (10) and (11),
respectively.

ŷtk = ytk − Htk x̂tk/tk−1 (10)

x̂tk/tk = x̂tk/tk−1 + Ktk ŷtk (11)

where x̂tk/tk is the model state prediction and ŷtk is the measure-
ments model prediction. ytk − Htk x̂tk/tk−1 is called the residual
or innovation and reflects the discrepancy between the predicted
measurements Htk x̂tk/tk−1 and the real measurement ytk . The
gain matrix Ktk is a factor that allows to weight more or less
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