Accepted Manuscript

An Evaluation of the Performance of Restricted Boltzmann Machines as a Model for Anomaly Network Intrusion Detection

Tamer Aldwairi, Dilina Perera, Mark A. Novotny

PII: \$1389-1286(18)30600-5

DOI: https://doi.org/10.1016/j.comnet.2018.07.025

Reference: COMPNW 6555

To appear in: Computer Networks

Received date: 28 December 2017

Revised date: 3 July 2018 Accepted date: 25 July 2018

Please cite this article as: Tamer Aldwairi , Dilina Perera , Mark A. Novotny , An Evaluation of the Performance of Restricted Boltzmann Machines as a Model for Anomaly Network Intrusion Detection, *Computer Networks* (2018), doi: https://doi.org/10.1016/j.comnet.2018.07.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

An Evaluation of the Performance of Restricted Boltzmann

Machines as a Model for Anomaly Network Intrusion Detection

Tamer Aldwairi^{a,*}, Dilina Perera^{a,b}, Mark A. Novotny^{a,b}

^aDistributed Analytics and Security Institute, High Performance Computing Collaboratory, Mississippi

State University, Starkville, Mississippi 39762

^bDepartment of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi

39762

Abstract

The continuous increase in the number of attacks on computer networks has raised serious concerns regarding the

importance of establishing a methodology that can learn and adapt to new and novel attacks, such a model should be

able to act or react to such threats within a timely manner, so that measures are undertaken to counter any potential

breaches within the network. Training a model to distinguish between normal and anomalous network behavior is a

difficult task due to the high dimensionality of the network traffic data. One of the key requirements of a successful

Anomaly Network Intrusion Detection Systems (A-NIDS) is the ability to recognize new patterns of attacks that it

has never before seen. This objective can be achieved through incorporating machine leaning techniques in the

learning model of the A-NIDS. In this study, we demonstrate the use of a powerful machine learning technique

called the Restricted Boltzmann Machine (RBM) to distinguish between normal and anomalous NetFlow traffic. We

evaluate our approach through testing it on the newly renowned Information Security Center of Excellence (ISCX)

dataset. Our results indicate that RBMs can be trained successfully to classify normal and anomalous NetFlow

traffic. Unlike previous studies, we employ measures of true positives and negatives along with the accuracy to test

the effectiveness of RBM as a classifier for A-NIDS. We also utilize the usage of a balanced set to reduce any biases

that appear during the RBM training.

*Corresponding author Tel.: +1 6623138462

Download English Version:

https://daneshyari.com/en/article/6882573

Download Persian Version:

https://daneshyari.com/article/6882573

<u>Daneshyari.com</u>