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a b s t r a c t 

As a means of detecting abnormal events in Wireless Sensor Networks (WSNs), this paper presents 

a Compressive Sensing (CS)-based algorithm, called Minimum Spanning Tree and Mobile Agent-based 

Greedy Shortest Path (MST-MA-GSP). The algorithm first of all uses a sparsity feedback mechanism to 

accurately estimate the sparsity k of the sensor measurements. It then uses Monte Carlo experiments to 

determine the minimum number of required measurements M min . According to the value of M min , the 

algorithm adaptively adjusts the number of measurements M in order to maximize its recovery perfor- 

mance. The experiments show that the proposed algorithm is superior to other compressive data gath- 

ering (CDG) algorithms in terms of energy balance, whilst the adaptive M min mechanism guarantees a 

reconstruction accuracy of at least 99%. Additionally, the sparse binary matrix used in the MST-MA-GSP 

algorithm offers better recovery of sparse zero-one data than other CDG-based measurement matrices. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Wireless Sensor Networks (WSNs) have the potential to be 

widely applied for the purposes of environmental monitoring [1–

4] . However, because the sensor nodes in WSNs are usually pow- 

ered by batteries, their computing and communication abilities are 

limited. Performing efficient data gathering has therefore become 

a pressing issue in WSN research. 

Compressive Sensing (CS) is a novel signal sampling theory. The 

core idea is that a finite-dimensional signal can be recovered from 

a small set of linear measurements when the signal is sparse in 

a basis or a dictionary. If we assume a WSN with N sensor nodes, 

each node can be assigned a different ID, ranging from 1 to N . Data 

readings x of the N sensor nodes can be written as the column vec- 

tor x = [ x 1 , x 2 , . . . , x i , . . . , x N ] 
T , where x i is the data reading for sen- 

sor node s i . If x has a sparse representation in a given sparsifying 

basis � ∈ R 

N×N , it is denoted as 

x = ��. (1) 

where � ∈ R 

N×1 is a coefficient vector. If the number of non-zero 

elements in the vector � equals k, x is k -sparse in the sparsifying 
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basis � . The measurements collected by a sink node are termed 

y = [ y 1 , y 2 , . . . , y i , . . . , y M 

] T , and 

y = �x. (2) 

where � ∈ R 

M×N (k < M � N) is the measurement matrix. 

As an example, extreme temperature changes can be consid- 

ered a sparse event [5] . CS is therefore applicable to the gath- 

ering of data about such events. To detect these kinds of sparse 

events, we set about designing a compressive data gathering algo- 

rithm, which adaptively adjusts the number of the required mea- 

surements M to ensure exact recovery. To do this, we take into 

consideration the sparsifying basis � and the measurement ma- 

trix �. In the detection of sparse events, we need to determine 

whether the abnormal event has occurred, that is, the detection 

is to monitor the state of the abnormal events. In this case, x can 

be regarded as sparse and � as the identity matrix. The measure- 

ment matrices can be dense random matrices or sparse random 

matrices [6] . CS theory indicates that it is sufficient to recover x 

from the measurements y when � satisfies the Restricted Isom- 

etry Property (RIP) of the matrices. Dense random matrices, such 

as independent and identically-distributed Gaussian random ma- 

trices, have an overwhelming probability of obeying the RIP, pro- 

vided that the number of measurements M meets the condition 

M ≥ ck log ( N / k ), where c is a positive constant. However, such ma- 

trices have high computational complexity and occupy more stor- 
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age space. In contrast, sparse random matrices are sparser, which 

means that they can reduce the computational complexity of en- 

coding. Wang et al. [7] have showed that this category of matrices 

is effective for the recovery of sensory data, with a performance 

comparable to optimal k -term approximation. 

It can be seen from the above that sparse random matrices al- 

ready have an advantage over dense random matrices. Sparse bi- 

nary matrices also belong to sparse random matrices. The recovery 

accuracy for these has proved to outperform existing sparse ran- 

dom matrices. So, in our own work, we take a sparse binary ap- 

proach. On the basis of this, we develop a compressive data gath- 

ering algorithm, the MST-MA-GSP algorithm, which first estimates 

the sparsity of sensory data. It then puts bounds on the minimum 

value M min to ensure accurate recovery. This algorithm can also be 

combined with the MA-Greedy algorithm to achieve an effective 

balance of energy consumption amongst the sensor nodes. 

The rest of the paper is organized as follows: In Section 2 , 

we review related work regarding compressive data gathering 

in WSNs. In Section 3 , we present a mobile agent-based net- 

work model using a CS framework. In Section 4 , we analyze the 

path-planning problem for mobile agents and propose a sparsity 

feedback-based data gathering algorithm as a solution. In Section 5 , 

we provide details of the experiments and undertake to demon- 

strate the performance of the proposed MST-MA-GSP algorithm. Its 

performance is then compared with other compressive data gath- 

ering algorithms. In Section 6 , we give our conclusions. 

2. Related work 

In this section, we introduce related work regarding compres- 

sive data gathering in WSNs. In [8] , sensor nodes synchronously 

transmitted sensory data to a sink node using a single hop trans- 

mission approach and CS was then applied to obtain energy ef- 

ficient estimation of the sensory data. However, multi-hop trans- 

mission wasn’t considered as a possible alternative. Rabbat et al. 

[9] developed an early application of CS for health monitoring 

where a multi-hop WSN approach was used. There, an assump- 

tion was made that most sensor nodes were running normally and 

that only a small number were corrupted. The corrupted sensors 

set a flag x i = 1 , and the other functioning sensors set x i = 0 . The 

goal was to identify the failed sensor nodes by using random pro- 

jections of the flag data x i . However, the random projections were 

obtained by using a simple gossiping algorithm, which resulted in 

a heavy traffic load. 

Luo et al. [10] have compared traditional approaches to data 

gathering and Compressive Data Gathering (CDG) using a chain- 

type topology. The chain-type topology was then expanded to 

a tree-type topology, thus providing the first complete CDG de- 

sign for large-scale WSNs. In this design, random projections were 

first obtained by the product of Gaussian random coefficients and 

sensory data, and then each sensor node transmitted M random 

projections (or weighted sums of random projections) to a sink 

node. When the sink node received the M random projections (or 

weighted sums), it utilized reconstruction algorithms to recover 

the data. Direct CS coding on each sensor node was termed plain- 

CS aggregation (plain-CS) (see [11] ). Xiang et al. [11] put forward 

a data aggregation technique called Hybrid-CS. Here, the sensor 

nodes started CS coding only once the outgoing data flows from 

the sensor nodes exceeded a certain number of measurements 

M . A Minimum Spanning Tree (MST) and data aggregation were 

jointly used in order to minimize the total energy consumption. 

The difficulty with Hybrid-CS is deciding how to divide the sen- 

sor nodes into an aggregator set and a forwarder set. In Hybrid-CS, 

the data were transmitted using a tree-type structure. When the 

data volumes transferred by each sensor node were very different, 

it was possible for an energy imbalance to arise among the sensor 

nodes. To solve this problem, Ebrahimi and Assi [12] have proposed 

a Minimum Spanning Tree Projection (MSTP) algorithm and an eM- 

STP algorithm, which aim to minimize the transmission cost by us- 

ing M forwarding trees. In the MSTP algorithm, M projection nodes 

first constructed a tree root at their own position. They then added 

their interest nodes (the visited nodes) to the tree using MST and 

Breath-First-Search (BFS) techniques. When each projection node 

received the weighted sums from its interest nodes, it transmit- 

ted them to a sink node by the shortest path. Unlike the MSTP 

algorithm, the eMSTP algorithm chose the sink node as the root of 

the tree. Experiments demonstrated that the two algorithms out- 

performed Hybrid-CS with respect to the overall network cost and 

load balancing. In [13] , the same authors further studied the inter- 

action between the forwarding tree construction and link schedul- 

ing. 

CS in conjunction with routing was exploited in [14] , with the 

sink node receiving random projections of sensory data through 

geographic routing. The routing matrix was a measurement matrix 

whose elements were generated by a pseudo random number gen- 

erator. Each sensor node looked for a next node within the range 

of nodes that would provide the largest geographical advancement 

towards the sink node. Lee et al. [15] took into account commu- 

nication cost and presented a Low Coherence Projection for effi- 

cient Routing (LCPR) algorithm to enact the route design. Moti- 

vated by the techniques presented in [16] , this algorithm iteratively 

made a greedy choice for the next node by identifying whether 

the other nodes within the communication range of the current 

node could minimize the intermediate coherence of � with a par- 

tial measurement matrix �partial . However, when each path con- 

tained only a small number of nodes, the results indicated that the 

effectiveness of CS might be limited. Chen and Wassell [17] have 

proposed an energy-efficient signal acquisition approach for mon- 

itoring 1-D environmental information. This approach didn’t re- 

quire prior information about the sparsity. The sparsity was ob- 

tained instead through data sampled at the highest rate. A Sam- 

pling Rate Indicator (SRI) feedback scheme was then introduced 

to minimize the number of samples under the condition that the 

reconstruction quality indicator (RQI) fell within a desired range. 

In a similar approach to Chen and Wassell [17] and Wang et al. 

[18] , Fazel et al. [19] have proposed a Random Access Compressed 

Sensing (RACS) algorithm for underwater environmental monitor- 

ing. To prolong network life, RACS used random sensing as a sam- 

pling procedure and simple random access for the channel access 

phase. 

Mamaghanian et al. [20] have assessed the potential of CS for 

energy-efficient Electrocardiogram (ECG) data acquisition and com- 

pression on resource-constrained Wireless Body Sensor Networks 

(WBSN) platforms. They explored three different methods (quan- 

tized Gaussian random sensing, pseudorandom sensing, and sparse 

binary sensing) to implement the random sensing matrix. The ap- 

proach using a sparse sensing matrix was superior in terms of ex- 

ecution time. Implementing a Gaussian random matrix was too 

complex and time consuming. Besides, for the Mixed Signal Pro- 

cessor 430 (MSP430), their designated task wasn’t achievable in 

real time. Based on a sparse binary matrix, Li and Qi [21] have 

proposed a distributed compressive sparse sampling (DCSS) algo- 

rithm. The algorithm selected M encoding nodes from N sensor 

nodes and sent their sensory data to a fusion center (FC) us- 

ing the shortest path. In approaches related to WSNs deployed in 

a unit square, Zheng et al. [22] have suggested a random walk- 

based non-uniform method, whilst Quan et al. [23] have developed 

a neighbor-aided compressive sensing (NACS) scheme. For WSNs 

deployed in square area or circular areas, Nguyen and Teague 

[24] have put forward a compressive sensing based random walk 

data collection (CSR) algorithm, where each CS measurement was 

forwarded to a Base Station (BS) in both one hop fashion (D- 
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