
Computer Networks 136 (2018) 51–67

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Enabling precise traffic filtering based on protocol encapsulation rules

Ivano Cerrato

∗, Fulvio Risso

Department of Control and Computer Engineering, Politecnico di Torino, Italy

a r t i c l e i n f o

Article history:

Received 22 June 2017

Revised 10 January 2018

Accepted 27 February 2018

Available online 28 February 2018

Keywords:

Packet filtering

Protocol encapsulations

Protocol encapsulation constraints

Construction algorithm

Augmented finite state automata

xpFSA

NetPFL

a b s t r a c t

Current packet filters have a limited support for expressions based on protocol encapsulation relationships

and some constraints are not supported at all, such as the value of the IP source address in the inner

header of an IP-in-IP packet. This limitation may be critical for a wide range of packet filtering appli-

cations, as the number of possible encapsulations is steadily increasing and network operators cannot

define exactly which packets they are interested in. This paper proposes a new formalism, called eX-

tended Finite State Automata with Predicates (xpFSA), that provides an efficient implementation of filter-

ing expressions, supporting both constraints on protocol encapsulations and the composition of multiple

filtering expressions. Furthermore, it defines a novel algorithm that can be used to automatically detect

tunneled packets. Our algorithms are validated through a large set of tests assessing both the performance

of the filtering generation process and the efficiency of the actual packet filtering code when dealing with

real network packets.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

While protocol encapsulations were rather simple in the past

(e.g., TCP/UDP in IP in Ethernet), new necessities, arising in partic-

ular from network virtualization, are rapidly increasing the com-

plexity of the protocol stack. This impacts on the complexity of

packet filters, which represent the basic building blocks for many

applications such as firewalls and network monitors. In fact, while

on the one hand packet filters should be able to capture all the

traffic of interest (e.g., web traffic) independently from the actual

encapsulations used at the lower layers (e.g., plain Ethernet or a

tunnel transporting IPv6 traffic over IPv4 networks), on the other

hand they should allow to finely select/filter only packets that in-

clude specific protocol encapsulations (e.g., PPP in GRE, TCP in the

second IP header instance of the packet).

Traditional packet filters, which are based on the existence of

some protocol and on the value of some protocol fields, do not al-

low such a precise selection of traffic according to the encapsula-

tions found in packets. For example, they cannot specify the value

of the IP source address in the inner header of an IP-in-IP packet.

The precise filtering of such traffic requires both a packet fil-

tering language that allows to express conditions on the encap-

sulation relationships between protocols, and an efficient imple-

mentation of that language in order to cope with the speed of

∗ Corresponding author.

E-mail address: ivano.cerrato@polito.it (I. Cerrato).

current networks. While the Network Packet Filtering Language

(NetPFL) [1] already addresses the first point, its implementation

is still partial and not optimized in case of complex protocol en-

capsulation rules [2] .

Based on the above considerations, this paper brings the fol-

lowing contributions to packet filtering. First, it proposes the eX-

tended Finite State Automata with Predicates (xpFSA) , a new formal-

ism to represent filtering expressions and that extends the pFSA

(Finite State Automata with Predicates) packet filtering model [3] .

Like its ancestor, xpFSA guarantees the optimal number of checks

on packet fields in order to identify their possible match of the fil-

tering expression, even in case of composition of multiple filters.

In addition, it introduces counters and elementary operations that

reduce the number of states of the automaton, which results in

a more efficient generation of the executable code implementing

the packet filter. Second, the paper defines an algorithm that trans-

forms filtering expressions (potentially including complex protocol

encapsulation constraints) into xpFSA, which completely replaces

the automaton building process defined for pFSA and that cannot

be used in case of complex encapsulation patterns. Third, it pro-

poses a novel algorithm that can be used to automatically assign

protocols to network layers, which is exploited to detect tunneled

encapsulations.

In order to evaluate our algorithms and the filtering code gen-

erated from a xpFSA, we implemented them into the NetBee li-

brary [4] . Notably, our implementation does not require a pri-

ori protocols definition; in fact, it exploits a protocol database

https://doi.org/10.1016/j.comnet.2018.02.027

1389-1286/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2018.02.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.02.027&domain=pdf
mailto:ivano.cerrato@polito.it
https://doi.org/10.1016/j.comnet.2018.02.027

52 I. Cerrato, F. Risso / Computer Networks 136 (2018) 51–67

provided at run-time that can be easily extended or modified in

order to recognize any new protocol and/or encapsulation, accord-

ing to the properties of the NetPDL language [5] . In other words,

our implementation can support both current and future protocols

and encapsulations seamlessly, provided that the proper descrip-

tion is included in the protocol database.

This paper is structured as follows. Section 2 discusses the re-

lated works, while Section 3 summarizes the main characteris-

tics of the NetPFL language and the pFSA packet filtering model.

Section 4 presents the xpFSA model, while the algorithm to trans-

form a NetPFL filtering expression into a xpFSA is detailed in

Section 5 . Section 6 shows the algorithm that automatically asso-

ciates protocols to network layers. Section 7 provides an overview

of the implementation; experimental results are then shown in

Section 8 , while Section 9 concludes the paper.

2. Related work

Despite the high number of publications on packet filters, at the

best of our knowledge none of them proposes a solution able to

handle filtering conditions with protocol encapsulation constraints.

For example, neither libpcap [6] , representing the foundation of

many packet filtering tools (e.g., tcpdump , Wireshark), nor the

Wireshark display filters [7] (which replace the basic filtering ca-

pabilities of libpcap when packets have to be shown on screen)

support such filtering expressions. Instead, the Network Packet Fil-

tering Language (NetPFL) [1] supports protocol encapsulation pat-

terns in the language definition, but its implementation is partial

and limited to traditional packet filters with simple encapsulation

rules [2] .

Traditional packet filters, such as the CMU/Standford Packet Fil-

ter [8] , the BPF [6] and BPF+ [9] , PathFinder [10] and the Dynamic

Packet Filter (DPF) [11] , focus more on the filtering architecture

(a.k.a., virtual machine), leaving less attention to the programming

abstraction. Moreover, they do not support constraints on protocol

encapsulation patterns and rely on ad hoc optimizations often in-

spired by compiler-oriented techniques, which are then applied to

the code to be executed.

To support filtering expressions including protocol encapsula-

tion constraints, this paper proposes xpFSA, namely an extension

of the pFSA packet filtering model that enables to reuse optimal

composition rules and optimization techniques defined in the au-

tomata theory [12] . In fact, the idea of extending an FSA is not

new when looking at the broader field of packet processing; for

instance, xpFSA takes some inspiring idea from the following pro-

posals, although none of them was designed (nor able) to satisfy

our objectives, some not being able even to filter packets.

The eXtended Finite Automata (XFA) [13] formalism augments

traditional FSA with a finite memory and generic executable code

to manipulate this memory, which is oriented to improve efficiency

of signature matching in network intrusion detection systems. Sim-

ilar ideas can be found also in the Extended Finite State Automata

(EFSA) [14] , which extends traditional FSA with finite sets of vari-

ables in order to model fast intrusion detection and prevention

systems. However, its design goals are rather different, as EFSA

is used to monitor sequences of system calls, which also requires

a completely different algorithm to build the automaton. Similar

considerations hold also for pfsr [15] , a predicate-augmented fi-

nite state recognizer that aims at simplifying the FSA used in nat-

ural language processing. Ruler [16] is a packet rewriter designed

to anonimize traffic traces, which can also be used for packet fil-

tering. It exploits a generalization of the FSA model called Tagged

DFA [17] and uses variables to store the current position in the in-

put string. FlowSifter [18] and COPY [19] extend context free gram-

mars, regular grammars and automaton with predicates on transi-

tions, variables and actions. Particularly, they define Counting Regu-

lar Grammars (CRG) [18] and Distinguishable Counting Regular Gram-

mars (DCRG) [19] as extensions of regular grammars that use coun-

ters; albeit their theoretical degree of expressiveness is equivalent

to our proposal, the implementation is rather different and targets

a diverse use case. In fact, they aim at efficiently parsing applica-

tion layer protocols (e.g., Facebook, Youtube) and extract fields of

such protocols, while the goal of our work is to recognize packets

satisfying constraints expressed on protocol encapsulations, with

strong requirements in terms of real-time recomputation of the fil-

tering code.

The Stateless FSA-based Packet Filter (SPAF) [20] model for

packet filtering, which is the predecessor of pFSA and xpFSA, guar-

antees code optimality and safety, and it could be used to repre-

sent filtering expressions that include protocol encapsulation con-

straints. However, it is extremely slow in the automata generation

phase because of the large number of generated states, and it is

therefore suitable only for applications that can tolerate long filter

generation time.

Finally, an early ancestor of the algorithm described in this pa-

per has been presented in [2] ; however, that algorithm does not

support filters including the header indexing, the tunneling con-

straint and predicates on protocol fields (described in Section 3.1).

3. Background

3.1. Network Packet Filtering Language (NetPFL)

The NetPFL [1] is a declarative high-level language aimed at de-

scribing the conditions that a packet must satisfy in order to be

accepted. Unlike other languages for packet filtering, NetPFL does

not define any protocol header and encapsulation by itself, but

it exploits definitions described externally, e.g., through the Net-

work Packet Description Language (NetPDL) [5] . Moreover, NetPFL

filtering expressions, or header chains , extend the traditional con-

ditions based on the existence of some protocols and on the value

of some protocol fields with conditions based on protocol encap-

sulation patterns, such as a specific chain of protocol headers.

This is achieved with the in and notin keywords, requiring

respectively that, within a packet, the left-hand protocol is directly

encapsulated into the right-hand one, or that the left-hand proto-

col is encapsulated in any protocol but the right-hand one. For in-

stance, tcp in {ip,ipv6} matches packets having TCP directly

encapsulated in IP or IPv6, while tcp notin ip accepts packets

in which TCP is encapsulated in any protocol but IP. To define an

encapsulation in which any protocol is valid, the literal any can be

used; as an example, tcp in any in ppp is satisfied by pack-

ets having the TCP header encapsulated in any protocol, in turn

encapsulated in PPP. Notably, the sequence of protocols specified in

the filtering expression could start anywhere in the packet, there-

fore it could be preceded and followed by any protocol repeated

an unspecified number of times.

Repetition operators describe conditions in which one or more

protocols may occur a variable number of consecutive times in

a certain position of the packet. In particular, “+ ” means one or

more occurrences of the given protocol, “∗” corresponds to zero or

more, while “? ” means zero or one. For example, the filter ip in
vlan ∗ in ethernet accepts the packets having IP encapsulated

in zero or more consecutive VLAN headers, preceded by an Ether-

net header.

More complex filters based on protocol encapsulations

are available as well. For instance, tcp.sport == 80 in
(ip.src! = 10.0.0.1)+ in ethernet matches packets

having the TCP protocol encapsulated in a sequence of one or

more consecutive IP headers, in turn encapsulated in Ethernet;

furthermore, the TCP source port must be equal to 80 , while

Download English Version:

https://daneshyari.com/en/article/6882705

Download Persian Version:

https://daneshyari.com/article/6882705

Daneshyari.com

https://daneshyari.com/en/article/6882705
https://daneshyari.com/article/6882705
https://daneshyari.com

