
Computer Networks 134 (2018) 55–65 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

Modeling LRU cache with invalidation 

Andrea Detti a , b , Lorenzo Bracciale 

a , Pierpaolo Loreti a , Nicola Blefari Melazzi a , b , ∗

a Electronic Engineering Department, University of Rome Tor Vergata, Rome, Italy 
b Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Italy 

a r t i c l e i n f o 

Article history: 

Received 27 March 2017 

Revised 14 December 2017 

Accepted 17 January 2018 

Available online 31 January 2018 

Keywords: 

Caching 

Invalidation 

LRU 

Wikipedia 

a b s t r a c t 

Least Recently Used (LRU) is a very popular caching replacement policy. It is very easy to implement and 

offers good performance, especially when data requests are temporally correlated, as in the case of web 

traffic. 

When the data content can change during time, as in the case of dynamic websites or within 

databases, there is the need to prevent the cache to serve stale data. This is usually done by trigger- 

ing an invalidation event in the cache, to purge all the previously cached data concerning the invalidated 

data item. The invalidation process tends to worsen the caching performance, since stored items can be 

invalidated after a short time, thus wasting storage space. 

Several models in the literature allow quantifying the cache hit probability of an LRU cache, but, to 

the best of our knowledge, the presence of invalidation events has not been taken into account so far. 

In this paper, we present an analytical performance evaluation of LRU caches that takes into account 

data requests and invalidation events, both modeled as independent renewal processes. Simulation re- 

sults show the accuracy of our model. Moreover, we apply our model to evaluate the LRU performance 

in the case of a real application, Wikipedia. Finally, we evaluate by means of simulations the effect of 

invalidation in hierarchical caching. 

Our work allows us to conclude that the presence of invalidation events does not severely impact the 

LRU performance in single caches. As a matter of fact, invalidation effects can be ignored there, unless the 

invalidation rate is comparable with the request rate and the per-object invalidation rate and request rate 

are highly correlated. However, in the case of hierarchical caching, even a limited effect of invalidation 

on first-level caches is sufficient to noticeably affect the performance of second level/downstream caches. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Caching is a well-known technique, used in web and database 

applications to reduce the data transport latency, processing load 

and network traffic and reduce/eliminate the occurrence of con- 

gestion / bottlenecks. A caching system is typically placed between 

the user(s) and the data source(s) and stores a copy of the re- 

sponse data of some requests, so that subsequent identical re- 

quests are served directly by that system instead of from the origin 

server. 

A caching system has a finite storage size. Therefore, some re- 

quested data items may be found in the cache (cache hit), while 

others are not (cache miss). In the case of a cache miss, the caching 

system fetches the requested item from the origin server (or more 

∗ Corresponding author at: Electronic Engineering Department, University of 

Rome Tor Vergata, Rome, Italy. Via del Politecnico 1, Rome, Italy. 

E-mail addresses: andrea.detti@uniroma2.it (A. Detti), 

lorenzo.bracciale@uniroma2.it (L. Bracciale), pierpaolo.loreti@uniroma2.it (P. Loreti), 

blefari@uniroma2.it (N.B. Melazzi). 

formally, it fetches the server response), possibly stores a copy of 

it for future use, and then serves the user. The main performance 

measure of a caching system is the cache hit probability, which is 

the probability that a generic request can be served with a cached 

item (cache hit), instead of being forwarded to the origin server 

(cache miss). 

A caching scheme determines which data items should be 

stored in the cache, e.g., in order to maximize the cache hit rate. 

More specifically, a replacement policy is a caching strategy that de- 

cides whether a requested item should enter the cache in case of a 

cache miss, as well as which item should then be evicted from the 

cache (i.e., which cached item will be replaced by the requested 

item), if the cache storage space is exhausted. Such decisions are 

based on the user behavior (i.e. the requests pattern), which is 

used to understand which item is addressed more frequently. 

Least Recently Use (LRU) is probably the most popular caching 

scheme, mainly due to its simple implementation, its low and con- 

stant cache update overhead, and its relatively good performance. 

The LRU policy is implemented in software as a finite-size stack 

https://doi.org/10.1016/j.comnet.2018.01.029 

1389-1286/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.comnet.2018.01.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.01.029&domain=pdf
mailto:andrea.detti@uniroma2.it
mailto:lorenzo.bracciale@uniroma2.it
mailto:pierpaolo.loreti@uniroma2.it
mailto:blefari@uniroma2.it
https://doi.org/10.1016/j.comnet.2018.01.029


56 A. Detti et al. / Computer Networks 134 (2018) 55–65 

of cached items. For each request, if the requested item is in the 

stack, then it is moved at the top of the stack; otherwise the re- 

quested item is inserted at the top of the stack and the last item 

of the stack is removed, to comply with the storage limit. 

Besides its simplicity, LRU also provides very good performance 

in terms of cache hit probability. This is due to the fact that LRU 

exploits the temporal correlations among requests, which are often 

found in web and database traffic patterns. The temporal locality 

refers to the tendency of recently requested items to be addressed 

again, which makes the most recently requested items good candi- 

dates for caching. 

However, any caching system must cope with a fundamental 

consistency problem: how to prevent a cache from serving stale 

data items, i.e. items whose version is older than the one avail- 

able at the source. Indeed, the content that is stored in the ori- 

gin server is often dynamically updated. Therefore, it’s necessary 

to check and enforce the consistency between the cached copy of 

the data stored in the caching system and the original data stored 

in the content server (data source). 

There are two types of data consistency: weak and strong. Weak 

consistency mechanisms include the association of a time-to-live 

(TTL) or an expiration time (in HTTP 1.1) to the cached data. When 

this timer expires, the consistency of the cached data has to be 

checked by contacting the origin server. Weak consistency schemes 

cannot guarantee data consistency, since there is always the pos- 

sibility that the data items have been updated at the origin server 

between two consistency checks (i.e. while the TTL or expiration 

timer was still running). Thus, this strategy can be used only for 

applications that can tolerate data inconsistency, to some extent. 

Other applications, though, such as on-line trading systems, 

cannot tolerate such inconsistencies. In this case, the use of strong 

consistency mechanisms, also known as invalidation mechanisms, 

is required. There are two types of invalidation mechanisms: 

proactive and reactive. In proactive invalidation, when an item is 

updated, the data source sends to the relevant caches an invalida- 

tion request, directing them to remove such cached item. This form 

of invalidation is very common in database systems (e.g. MySQL). 

In reactive invalidation, which is commonly used in web sys- 

tems, if the cache contains the content upon a request arrival, then 

the cache sends a conditional request (If-None-Match) to the ori- 

gin server, which then replies either with an HTTP 304 response 

NOT MODIFIED, if the cached item matches with the correspond- 

ing data item stored in the content server (cache hit), or with the 

full data response, if the cached item is stale (cache miss). 

Then, we have a cache hit only if the requested item is found 

in the cache and it is not stale. Nevertheless, surprisingly enough, 

the impact of invalidation mechanisms on the LRU cache hit rate 

has not been studied in the literature. The goal of this article is to 

address this issue. 

Accordingly, the contribution of this paper is to extend the ex- 

isting models of LRU caches, with the aim of evaluating the cache 

hit probability in presence of both request and invalidation events, 

modeled as renewal processes. Then we use the extended model to 

derive insights on the impact of invalidation patterns on cache per- 

formance and compare proactive and reactive strategies. We also 

evaluate the performance of LRU caching systems with frequently 

invalidated data in real world scenarios, using a dataset extracted 

from Wikipedia traffic. Finally, we evaluate the effect of invalida- 

tion in hierarchical caching. 

2. Related work 

Several caching replacement policies have been proposed in the 

literature, from simple FIFO, LRU, and LFU schemes to the recent 

Time To Live (TTL) based cache [1] , SG-LRU cache [2] and many 

other ones. Among them, LRU is perhaps the most popular in real- 

world systems, given its implementation simplicity and very good 

performance in case of traffic with temporal locality [3] . For in- 

stance, MySQL, the world’s most popular open source database, 

has a built-in feature called Query Cache that uses an LRU cache 

to store query results. 1 Reverse proxies, such as Varnish 

2 (used by 

5.2% of the most popular 10,0 0 0 sites in the web), memory object 

caching systems, such as Memcached 

3 (used by Wikipedia, Flickr, 

LiveJournal, Craigslist), and several client-side caching proxies, such 

as the popular and historical Squid Proxy, 4 use LRU as the default 

solution for their memory replacement policies. 

2.1. Performance evaluation of LRU 

LRU caches have been studied for a long time, with models and 

approximations devised to calculate the cache hit probability [4,5] . 

Several years later, in 2002, Che et al. provided a very practical 

approach for LRU performance modeling called “Che’s approxima- 

tion” [6] . The model exploits several approximations to derive very 

simple formulas for computing the cache hit probability, given a 

certain popularity statistics of the contents and Poisson request 

inter-times. Despite its simplicity, Che’s approximation achieves a 

very high accuracy, as recognized by many authors, even if a com- 

plete mathematical analysis of such model has been provided only 

10 years after the original paper, by Fricker et al. in [7] . However, 

recently, it has been noted in [8] that the “Che’s approximation” is 

essentially a re-phrasing of the Fagin asymptotic formula [4] . Thus, 

we also refer to it as “Characteristic Time Approximation”. 

Che’s approximation paved the way for many research works 

that extend the original model to a broader set of cases, for in- 

stance to cope with different inter-time distributions and cache 

chains [9–11] . To the best of our knowledge, this is the first work 

that presents the effects of invalidation in LRU caching systems, 

considering proactive and reactive invalidation schemes, as de- 

scribed below. 

2.2. Maintaining cache consistency with data invalidation 

A main issue in cache systems is to guarantee data consistency, 

i.e. to prevent caches to serve stale data to clients. In particular, so- 

lutions can be classified in two main categories, providing a weak 

and a strong consistency of the data [12,13] . 

In case of weak consistency strategies, client queries might still 

be served with inconsistent (stale) data items, which can be stale 

up to a period of time or with a certain probability [14] . Weak con- 

sistency mechanisms are easily to implement, being usually based 

on a validity period included in a content header; this is for in- 

stance the case of Information Centric Networks (ICN) [15] , which 

have recently renewed the interest in caching systems. 

One such approach is the TTL cache strategy, where an item is 

invalidated after an expiration time, calculated from the start of 

cache placement [16,17] . 

Even though in some scenarios it may be acceptable to use stale 

data, there are other cases, such as databases or specific web appli- 

cations (e.g., on line trading), in which strong consistency is nec- 

essary, i.e., the cache should never provide stale data. This can be 

done either with a proactive approach , in which the data source 

pushes a notification to the cache, signaling a data changes and 

triggering the cache to clean the changed data item (as it occurs in 

MySQL), or with a reactive approach , where it is up to the cache to 

contact the server for checking the consistency of the stored data 

1 http://dev.mysql.com/doc/refman/5.7/en/query- cache- status- and- maintenance. 

html . 
2 https://varnish-cache.org/ . 
3 https://memcached.org/ . 
4 http://www.squid-cache.org/ . 

http://dev.mysql.com/doc/refman/5.7/en/query-cache-status-and-maintenance.html
https://varnish-cache.org/
https://memcached.org/
http://www.squid-cache.org/


Download English Version:

https://daneshyari.com/en/article/6882744

Download Persian Version:

https://daneshyari.com/article/6882744

Daneshyari.com

https://daneshyari.com/en/article/6882744
https://daneshyari.com/article/6882744
https://daneshyari.com

