
Computer Networks 133 (2018) 195–211

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

On reliability improvement of Software-Defined Networks

Shadi Moazzeni a , Mohammad Reza Khayyambashi a , ∗, Naser Movahhedinia

a ,
Franco Callegati b

a Department of Computer Architecture, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
b Department of Computer Science and Engineering, University of Bologna, via Venezia 52, Cesena, FC 47521, Italy

a r t i c l e i n f o

Article history:

Received 26 March 2017

Revised 6 November 2017

Accepted 17 January 2018

Keywords:

Software-Defined Networks

Distributed controllers

Reliability

Failure detection

Fast failure recovery

Coordinator controller

a b s t r a c t

In Software-Defined Networks (SDNs) the role of the centralized controller is crucial, and thus it becomes

a single point of failure. In this work, a distributed controller architecture is explored as a possible so-

lution to improve fault tolerance. A network partitioning strategy, with small subnetworks, each with its

own Master controller, is combined with the use of Slave controllers for recovery aims. A novel formula

is proposed to calculate the reliability rate of each subnetwork, based on the load and considering the

number and degree of the nodes as well as the loss rate of the links. The reliability rates are shared

among the controllers through a newly-designed East/West bound interface, to select the coordinator for

the whole network. This proposed method is called “Reliable Distributed SDN (RDSDN).” In RDSDN, the

failure of controllers is detected by the coordinator that may undertake a fast recovery scheme to re-

place them. The numerical results prove performance improvement achievable with the adoption of the

RDSDN and show that this approach performs better regarding failure recovery compared to methods

used in related research.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Software-Defined Networking (SDN) has recently emerged as a

novel paradigm to overcome the challenges related to the control

plane of modern communication networks [1,2] . The brain of the

control plane is the so-called SDN controller, which typically talks

with network devices through a Southbound Interface (SBI) such

as the OpenFlow protocol [3] . The control plane exposes some fea-

tures and APIs through the Northbound Interface (NBI) to network

operators to design various management applications exploiting,

for instance, a set of REST APIs [4,5] . The centralized control plane

approach of SDN promises controllable networks but raises a reli-

ability issue since the SDN controller may turn into a centralized

point of failure. This is a known issue, and several countermeasures

have been proposed. We have reviewed these works in Section 2 .

In this article the goal is to consider the data plane and con-

trol plane reliability as a combined issue, proposing a solution that

combines network partitioning, controllers’ coordination, and data

plane reliability characteristics to enhance the overall network re-

silience.

∗ Corresponding author.

E-mail addresses: moazzeni@eng.ui.ac.ir (S. Moazzeni), m.r.khayyambashi@comp.

ui.ac.ir (M.R. Khayyambashi), naserm@eng.ui.ac.ir (N. Movahhedinia),

franco.callegati@unibo.it (F. Callegati).

URL: http://eng.ui.ac.ir/~m.r.khayyambashi (M.R. Khayyambashi)

To reduce the effect of the data plane or controller failures,

it is assumed that a whole network domain can be partitioned

into subnetworks. Each subnetwork is controlled by a Master con-

troller and has one or more controllers of the other subnetworks

as Slave controllers. Each subnetwork’s Master controller calculates

the reliability rate by exploiting the newly proposed formula. The

reliability rates are shared periodically among controllers using

edge switches through a newly designed East/West bound inter-

face. There may be backup control routes in addition to the main

routes to improve fault coverage. The controller which has the best

reliability rate would be selected as the coordinator who checks

the status of the other controllers, periodically. This newly pro-

posed method is called “Reliable Distributed SDN (RDSDN)” which

aims to improve the reliability of SDNs with distributed controllers.

Through the detection phase, the coordinator detects any non-

active controller and will decide which other controller is more

appropriate to take over the subnetwork according to the cached

reliability rates and then will trigger the fast recovery scheme un-

til the failed controller is repaired. Therefore, the created inertia is

attenuated. If the coordinator crashes or a better controller exists,

a new one will be chosen by election.

The paper is organized as follows: A review of the most impor-

tant issues in SDN reliability and the related studies are presented

in Section 2 . The main contribution containing the state-of-the-art

method for calculating the reliability rate and describing RDSDN

is in Section 3 . The pilot implementation of our work, including

https://doi.org/10.1016/j.comnet.2018.01.023

1389-1286/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2018.01.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.01.023&domain=pdf
mailto:moazzeni@eng.ui.ac.ir
mailto:m.r.khayyambashi@comp.ui.ac.ir
mailto:naserm@eng.ui.ac.ir
mailto:franco.callegati@unibo.it
http://eng.ui.ac.ir/~m.r.khayyambashi
https://doi.org/10.1016/j.comnet.2018.01.023

196 S. Moazzeni et al. / Computer Networks 133 (2018) 195–211

Fig. 1. SDNs with (a) central controller (b) distributed controllers.

Fig. 2. A view of distributed controllers (a) fully-distributed (flat) (b) hierarchical.

failure detection and recovery schemes, is presented in Section 4 .

The numerical results are presented in Section 5 , and finally, in

Section 6 a brief conclusion is given.

2. Reliability issues in SDNs

An SDN implementation may be based on a centralized (Fig. 1 a)

or distributed (Fig. 1 b) controller architecture. The former solution

is simpler and easier to manage but intrinsically unreliable. More-

over, the effectiveness of the controller may be impaired by the

propagation delay when the distance between switches and con-

troller is large [6] . The latter is more complex. It requires that,

for consistency reasons, the controllers talk to each other through

the so-called East/West bound interfaces but is also known to be

effective in im proving fault tolerance and reliability [6–9] . Briefly,

we can say that a distributed controller architecture is preferable

when reliability is the issue.

Nonetheless the control plane topology and network elements

distribution level still present a number of alternatives with differ-

ent characteristics. It is evident that the distribution of the net-

work elements among the controllers could lower the effect of

inevitable physical failures on the controlling networks and im-

prove the overall reliability. As shown in Fig. 2 a and b, in con-

trol plane setup, controller arrangement is either fully-distributed

(flat arrangement) or hierarchical (vertical arrangement). The fully-

distributed architecture may require a considerable amount of syn-

chronization overhead to integrate the controllers while the hier-

archical architecture may not tolerate all the errors and failures if

the Master is the point of failure. In a hierarchical arrangement,

only the root controller owns and manages the global network

state. Conversely, in a flat arrangement, each SDN controller has

the global network-wide state [10] .

2.1. Control plane topology

2.1.1. Fully distributed (flat) controllers

Onix [11] , SmartLight [12] , DISCO [13] , ElastiCon [14] , ICONA

[15] , and cluster-based distributed controllers [16] are examples

of fully-distributed controllers. The majority of these controllers

have a consistent view. In Onix, the topology information mostly

in static mode is distributed among all controllers under replicated

databases while in dynamic mode is distributed in a hash table

with weak consistency. In a SmartLight controller, the network is

controlled by a central controller, and backup controllers are used

as active replicas to create constant views of the network to en-

sure fault tolerance. However, the applicants’ requests need to be

forwarded to all replications which is time-consuming.

DISCO distributed controllers rely on agents to supply an end-

to-end service. The message that is sent to a region is sent to other

regions as well. Therefore, DISCO does not emphasize a solution

to enable a controller to consider links with higher performance

or stopping the transfer of excessive messages among different re-

gions.

Given that there is a high probability of traffic and load change

on a controller in heterogeneous networks, loads in ElastiCon are

considered to allow a switch to migrate from a crowded controller

to another less crowded one. The network in the ICONA application

– which is used as an upstream application in ONOS open source

OS [17] – is categorized into several clusters where each cluster

consists of a head controller and some backups. Making connec-

tions among controllers to quantify traffic using ONOS is consid-

ered in [18] . Even though the fault tolerance is high due to us-

ing backup replicas, there may exist a considerable synchronization

overhead due to the generation of a strong consistency which may

decrease the overall performance. In the proposed RDSDN method,

since each SDN controller owns the global network-wide state, it

is placed in the flat layer. On the other hand, because of using

the Master/Slave feature, when the coordinator detects a master

controller failure, the most reliable controller between the pre-

configured slave controllers will be chosen, and the failed switches

will be assigned to it. So, the synchronization overhead is respec-

tively lower.

2.1.2. Hierarchical controllers

Kandoo [9] , Improved Kandoo [19] , DSDN [20] and FlowBroker

[21] are examples of two-level hierarchical controllers. ORION [22] ,

ANT [23] , and multi-level controllers [24] are examples of multi-

level hierarchical controllers, and heterogeneous multi-level hier-

archical controllers [25] is an example of the clustered hierarchical

controllers.

In most hierarchical controllers, two layers, including the root

controller and local controllers are taken into account. In other so-

lutions like those introduced in [8,24] , the topology of the control

plane is examined out-of-band with three layers through identical

links. In the article introducing heterogeneous multi-level hierar-

chical controllers, controllers are clustered and to reduce the delay

Download English Version:

https://daneshyari.com/en/article/6882778

Download Persian Version:

https://daneshyari.com/article/6882778

Daneshyari.com

https://daneshyari.com/en/article/6882778
https://daneshyari.com/article/6882778
https://daneshyari.com

