
Computer Networks 130 (2018) 51–64

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Analysing and improving convergence of quantized congestion

notification in Data Center Ethernet

Ran Shu

a , Fengyuan Ren

a , ∗, Jiao Zhang

b , Tong Zhang

a , Chuang Lin

a

a Department of Computer Science and Technology, Tsinghua University, Beijing, 10 0 084, China
b School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China

a r t i c l e i n f o

Article history:

Received 12 November 2016

Revised 17 October 2017

Accepted 14 November 2017

Available online 21 November 2017

Keywords:

Data Center Ethernet

Quantized Congestion Notification

Convergence

Modeling

a b s t r a c t

Quantized Congestion Notification (QCN) has been approved as the standard congestion management

mechanism for the Data Center Ethernet (DCE). However, lots of work pointed out that QCN suffers from

the problem of unfairness among different flows. In this paper, we found that QCN could achieve fairness,

merely the convergence time to fairness is quite long. Thus, we build a convergence time model to in-

vestigate the reasons of the slow convergence process of QCN. We validate the precision of our model by

comparing with experimental data on the NetFPGA platform. The results show that the proposed model

accurately well characterizes the convergence time to fairness of QCN. Based on the model, the impact

of QCN parameters, network parameters, and QCN variants on the convergence time is analysed in de-

tail. Results indicate that the convergence time of QCN can be decreased if sources have the same rate

increase probability or the rate increase step becomes larger at steady state. Enlightened by the analysis,

we proposed a mechanism called QCN-T, which replaces the original Byte Counter and Timer at sources

with a single modified Timer to reduce the convergence time. Finally, evaluations show great improve-

ments of QCN-T in both convergence and stability.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently, using a unified infrastructure to replace LAN, SAN and

HPC networks in data centers has attracted much attention [1,2] .

Data Center Ethernet (DCE), also called Converged Enhanced Eth-

ernet (CEE) or Data Center Bridging (DCB), is considered as the

predominant choice for the unified infrastructure due to Ethernet’s

features of easy management, low cost, and so on. SANs and HPC

networks require lossless transfer as well as low end-to-end delays.

To satisfy these requirements, DCE needs to enhance the perfor-

mance of traditional Ethernet. Congestion control in DCE, designed

by the IEEE 802.1Qau work group, is one critical enhancement [2] .

It aims to provide end-to-end congestion management for traffic

without congestion control mechanisms above the link layer, such

as Fibre Channel over Ethernet (FCoE), UDP. Also, it is expected to

benefit up-layer protocols at coexistence, such as TCP, whose con-

gestion control mechanisms do not perform very well in data cen-

ters.

∗ Corresponding author.

E-mail addresses: shuran@csnet1.cs.tsinghua.edu.cn (R. Shu),

renfy@tsinghua.edu.cn (F. Ren), jiaozhang@bupt.edu.cn (J. Zhang), zhang-

t14@mails.tsinghua.edu.cn (T. Zhang), chlin@tsinghua.edu.cn (C. Lin).

The QCN protocol has been ratified to be the standard conges-

tion management scheme for DCE in March 2010 [2] . Many new

switches have been designed to support QCN functions, such as

Cisco Nexus 70 0 0 [3] and FocalPoint FM60 0 0 [4] .

However, some recent work points out that flows could not ob-

tain their fair share of bandwidth under QCN [5–7] . The unfairness

of QCN will negatively impact the performance of services run-

ning over DCE. For example, the MapReduce programming model

is widely employed by services in today’s data centers [8,9] . A large

job will be partitioned into small tasks and assigned to different

workers. The final completion time of the job is determined by

the slowest worker. Therefore, if all workers could not get their

fair share of bandwidth, the flow completion time of them will

have large variance and thus the job will be lagged by the slug-

gish worker.

Some attempts have been made to explore the reasons for QCN

unfairness. There are two main points. First, a Reaction Point (RP)

decreases its rate upon receiving a negative feedback from a Con-

gestion Point (CP). However, a CP transmits each feedback message

to a randomly selected RP. The random destinations of feedback in-

curs unfairness among RPs. Second, the flows with higher rates

have more opportunities to increase their rates [6] . RPs use both

Byte Counter and Timer to control rate increase in QCN. If the Byte

https://doi.org/10.1016/j.comnet.2017.11.004

1389-1286/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2017.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.11.004&domain=pdf
mailto:shuran@csnet1.cs.tsinghua.edu.cn
mailto:renfy@tsinghua.edu.cn
mailto:jiaozhang@bupt.edu.cn
mailto:zhang-t14@mails.tsinghua.edu.cn
mailto:chlin@tsinghua.edu.cn
https://doi.org/10.1016/j.comnet.2017.11.004

52 R. Shu et al. / Computer Networks 130 (2018) 51–64

Counter of an RP shows that the RP has transmitted 150 KB data or

the Timer has passed 15 ms, the rate of the RP will increase. Gen-

erally the Byte Counter dominates the rate increase in DCE. Thus,

the RPs with larger sending rates will increase their rates more

quickly.

Based on the two kinds of reasons, some mechanisms are pro-

posed to make QCN more fair. To avoid unfair feedback, AF-QCN

[5] and FQCN [7] have been proposed to fairly transmit feedbacks

to each RP. However, these two mechanisms require that each

switch maintain the information of all the passing flows, which

disobeys the design principle that QCN switch does not save flow

information. To avoid that RPs with higher rates increase quickly,

the Byte Counter employed in QCN is modified to an adaptive Byte

Counter [6] . However, it is difficult to determine a general param-

eter value used in the adaptive Byte Counter.

To solve the problem of long convergence time in QCN at low

cost, we need to thoroughly understand the radical reasons for

the long convergence time in depth. In this paper, we first inves-

tigate the whole convergence process of QCN using experiments

in a small testbed which consists of Dell Servers and NetFPGA.

We find that QCN is actually fair. However, the convergence time

to fairness is quite long, which possibly exceeds the investigation

time in former work. Hence, many researchers stated QCN is not

fair.

After investigating the experimental data, we conclude that the

convergence process of QCN could be partitioned into three stages.

The first two stages determine the initial rate values of the 3rd

stage, and the 3rd stage will lead to the long convergence time

of QCN if the initial rates are not fair. The reasons for unfair-

ness during the first two stages are straightforward. Therefore, our

model on QCN convergence time to fairness mainly characterizes

the rate evolution during the 3rd stage. The proposed model in-

dicates that if the probability of rate increase at RPs is irrespec-

tive of the current rate values of RPs or the rate increase value per

time could be larger, then the convergence time of QCN can be

reduced.

The proposed model is evaluated and compared against the ex-

perimental data on the NetFPGA platform. The results show that

the model well characterizes QCN convergence time to fairness.

Furthermore, the impact of QCN parameters, network configura-

tions, and different QCN variants on QCN convergence time is also

analysed.

Enlightened by the experimental investigation results and

model analysis, we conclude that using Timer can definitely re-

duce QCN convergence time. Therefore, we propose QCN-T, an en-

hanced mechanism that replaces the Byte Counter and Timer in

the standard QCN with a single modified Timer to control the rate

increase. Experimental evaluations show that our proposed QCN-T

could significantly decrease the convergence time to fairness com-

pared with QCN. Besides, QCN-T reaches a fairer bandwidth share.

Moreover, analysis shows QCN-T also improves stability when the

number of senders is larger than 5. Further experiments reveal that

QCN-T has more than twice the stability margin as QCN in the typ-

ical Data Center Ethernet environment.

The remainder of this paper is organized as follows.

Section 2 introduces the background. In Section 3 , we investi-

gate the rate evolution process of QCN through experiments on

the NetFPGA platform. Detailed convergence time model of QCN

is described in Section 4 . In Section 5 , the accuracy of our model

is validated by comparing the analysis results with experiment

data on NetFPGA platform, and the impact of different factors

on the convergence time of QCN is also discussed with the

model. Section 6 proposes the enhanced mechanism — QCN-T.

We evaluate the convergence and stability of QCN-T through

further experiments in Section 7 . Finally, the paper is concluded

in Section 8 .

2. Background

In this section, we briefly describe the QCN mechanism, focus-

ing on those parts that are relevant to our analysis. The whole de-

scription can be seen in [10,11] . QCN is composed of two parts.

• Switch or CP . CP samples packets and generates feedback frames

according to the queue length information. Feedback frames are

sent to the source of packets directly.

• Rate Limiter or RP . RP decreases its sending rate based on feed-

back, and probes for available bandwidth by self-increase.

2.1. The CP algorithm

The goal of CP is to maintain the queue at a desired length Q eq .

CP samples incoming packets with a period whose duration is re-

lated to congestion. Normally the period is the duration of trans-

mitting 150 KB data. Let Q denote the current queue length and

Q old denote the queue length of last sampling. CP calculates f b as

follows:

f b = −(Q of f + w ∗ Q δ) , (1)

where Q of f = Q − Q eq , Q δ = Q − Q old , w is a constant weight value.

It is set to be 2 in the baseline implementation. Thus, both of the

buffer excess and the rate excess are captured. Negative f b means

that there is congestion or congestion is going to happen. The

value of f b is quantized to a 6 bits value F b , and a feedback frame

containing F b will be sent to the source of this sampled packet. If

f b is positive, no feedback frame will be sent.

2.2. The RP algorithm

RPs decrease their sending rates upon receiving negative feed-

back frames from CPs. Since there is no positive feedback from CPs

to make RPs increase their rates, RPs have a self-increasing algo-

rithm. Thus, rate decreases and rate increases are separated in RP.

The design of rate increases at RPs originates from BIC-TCP [12] . Let

Current Rate (R c) denote the sending rate of RP and Target Rate (R t)

denote the sending rate just before the arrival of the last feedback

frame. R t is used to control rates more accurately.

Rate decreases: When a feedback frame is received, RPs update

R t and R c as follows: {
R t = R c ,

R c = R c (1 − G d F b) ,
(2)

where G d is chosen so that G d F bmax = 0 . 5 , i.e. G d is
1

128 in the base-

line implementation.

Rate increases: The rate increase interval is controlled by the

cooperation of Byte Counter and Timer at RPs. Each cycle of Byte

Counter is 150 KB and Timer is 15 ms in 1 Gbps baseline imple-

mentation. Each cycle of Byte Counter or Timer leads to a rate in-

crease operation. The rate increase of RPs has three phases:

Fast Recovery (FR) : After a rate decrease, both Byte Counter and

Timer are reset. RP tries to get the lost rate back. At the end of

each cycle, R t remains unchanged while R c is updated as follows:

R c =

1

2

(R c + R t) . (3)

Active Increase (AI) : With either Byte Counter or Timer larger than

5, RP enters the AI phase to probe for extra bandwidth. The dura-

tion of each cycle is cut by half in FR i.e. 75 KB for Byte Counter

and 7.5 ms for Timer for a more frequent probing. At the end of

each cycle, R t is added by a constant value while R c is updated the

same as in FR: {
R t = R t + R ai ,

R c =

1
2
(R c + R t) .

(4)

Download English Version:

https://daneshyari.com/en/article/6882812

Download Persian Version:

https://daneshyari.com/article/6882812

Daneshyari.com

https://daneshyari.com/en/article/6882812
https://daneshyari.com/article/6882812
https://daneshyari.com

