
Computer Networks 106 (2016) 161–170

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

BeaQoS: Load balancing and deadline management of queues in an

OpenFlow SDN switch

L. Boero

a , M. Cello

b , ∗, C. Garibotto

a , M. Marchese

a , M. Mongelli c

a University of Genoa, Via all’Opera Pia 13, 16145, Genova, Italy
b Nokia Bell Labs, Blanchardstown Business & Technology Park, Snugborough Road, Dublin 15, Ireland
c National Research Council, Via De Marini 6, 16149, Genova, Italy

a r t i c l e i n f o

Article history:

Received 17 August 2015

Revised 25 March 2016

Accepted 20 June 2016

Available online 24 June 2016

Keywords:

SDN

OpenFlow

Packet loss

Traffic engineering

a b s t r a c t

Current OpenFlow specification is unable to set the service rate of the queues inside OpenFlow devices.

This lack does not allow to apply most algorithms for the satisfaction of Quality of Service requirements

to new and established flows. In this paper we propose an alternative solution implemented through

some modifications of Beacon, one popular SDN controller. It acts as follows: using ‘almost’-real-time

statistics from OpenFlow devices, Beacon will re-route flows on different queues to guarantee the obser-

vance of deadline requirements (e.g. the flow is still useful if, and only if, is completely received by a

given time) and/or an efficient queue balancing in an OpenFlow SDN switch. Differently from the litera-

ture, we do not propose any new primitive or modification of the OpenFlow standard: our mechanism,

implemented in the controller, works with regular OpenFlow devices. Our changes in the SDN controller

will be the base for the design of a class of new re-routing algorithms able to guarantee deadline con-

straints and queue balancing without any modification of the OpenFlow specification, as well as, of Open-

Flow devices.

© 2016 Published by Elsevier B.V.

1. Introduction

Software Defined Networking (SDN) is revolutionizing the net-

working industry by enabling programmability, easier management

and faster innovation [1,2] . These benefits are made possible by its

centralized control plane architecture which allows the network to

be programmed and controlled by one central entity.

The SDN architecture is composed both of SDN enabled devices

(switches/routers) 1 and of a central controller (SDN controller). An

SDN device processes and delivers packets according to the rules

stored in its flow table (forwarding state), whereas the SDN con-

troller configures the forwarding state of each SDN device by using

a standard protocol called OpenFlow (OF) [2] . The SDN controller

is responsible also to build the virtual topology representing the

physical topology. The virtual topology is used by the application

∗ Corresponding author. The work has been performed while M. Cello was em-

ployed at University of Genoa.

E-mail addresses: luca.boero@edu.unige.it (L. Boero), marco.cello@nokia-bell-

labs.com (M. Cello), chiara.garibotto@edu.unige.it (C. Garibotto), mario.marchese@

unige.it (M. Marchese), maurizio.mongelli@ieiit.cnr.it (M. Mongelli).
1 In the following we will use the terms: SDN device, OpenFlow device, OpenFlow

switch, interchangeably, even if the term “OpenFlows switch” or simply “switch”

indicates an SDN enabled device in most SDN literature.

modules that run on top of the SDN controller to implement dif-

ferent control logics and network functions (e.g. routing, traffic en-

gineering, firewall actions).

Currently the Quality of Service (QoS) management in OF is

quite limited: in each OF switch one or more queues can be con-

figured for each outgoing interface and used to map flow entries

on them. Flow entries mapped to a specific queue will be treated

according to the queue’s configuration in terms of service rate, but

the queue’s configuration takes place outside the OF protocol . For

example, the queue’s service rate cannot be modified by OF.

Supposing that a flow is traversing a chain of queues from

the source to the destination node, and that the flow data rate

increases, a possible consequence is that queues increase their

occupancy, and a bottleneck may be generated with consequent

network congestion. The impossibility to change the bottleneck

queue’s service rate through real-time OF directives can lead to a

severe performance degradation for the flows traversing that queue

because, without a proper rate assignment, it is very difficult to

guarantee Quality of Service requirements to the flows [3] .

A possible solution to mitigate the performance degradation in-

volves the re-routing of the flows experiencing a violation of dead-

line constraints (e.g. the flows that are totally received beyond the

fixed time constraint) [4] on less congested paths or queues. The

underlying idea is that, since we cannot change the service rate of

http://dx.doi.org/10.1016/j.comnet.2016.06.025

1389-1286/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.comnet.2016.06.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.06.025&domain=pdf
mailto:luca.boero@edu.unige.it
mailto:marco.cello@nokia-bell-labs.com
mailto:chiara.garibotto@edu.unige.it
mailto:mario.marchese@unige.it
mailto:maurizio.mongelli@ieiit.cnr.it
http://dx.doi.org/10.1016/j.comnet.2016.06.025

162 L. Boero et al. / Computer Networks 106 (2016) 161–170

the queues, we act on the ingress traffic, moving a subset of flows

on different paths or queues in case of need. In order to be 100%

compatible with current OF hardware, we impose no changes to

OF specifications and directives. Instead we propose to modify one

popular SDN controller: Beacon [5] . The proposed solution, BeaQoS ,

applied to a single SDN switch, is an extension of our previous

work presented in [6] . Our new updated controller will receive

statistics about queues, flows and ports from OF switches and will

compute an estimation of the flow rates and of the packet loss of

the queues. Based on customizable policies, BeaQoS will be able to

select a subset of flows experiencing congestion over the bottle-

neck queue and to re-route them on another and less congested

queue, so improving the switch performances. The action of flow

re-routing may be exploited not only for deadline management but

also for efficient queue load balancing. On the other hand load bal-

ancing is often seen as an action to prevent congestion and, con-

sequentially, to limit and delay performance detriment.

The remainder of this paper is structured as follows. We de-

scribe related works on this field in Section 2 . Concerning the main

contributions of the paper:

– We explain the motivations that lead to consider multi-queue

interfaces with variable service rate to support deadline man-

agement in Section 3 ;

– We describe the basic idea concerning the re-routing mecha-

nisms introduced in this paper in Section 4.1 , where we also

show how it can be usefully applied in case of multi-core ar-

chitectures and load balancing issues among queues;

– We describe the modifications of the Beacon controller required

to implement re-routing in Section 4.2 ;

– We propose five effective re-routing strategies in BeaQoS: two

of them aimed at improving deadline management and three

of them aimed at balancing the load among queues in a SDN

switch in Section 5 .

We show the performance analysis of our proposed algorithms

in Section 5 . We report a discussion about the obtained results to-

gether with the conclusions in Section 7 .

2. Related works

Despite traffic engineering (TE) approaches are often ruled by

MPLS-TE [7,8] , the ability of the SDN controller to receive (soft)

real-time information from SDN devices and to make decisions

based on a global view of the network, coupled with the ability of

“custom”-grained flow aggregation inside SDN devices, makes TE

one of the most interesting use cases for SDN networks.

Global load balancing algorithms are proposed in [9] that ad-

dresses load-balancing as an integral component of large cloud ser-

vices and explores ways to make load-balancing scalable, dynamic,

and flexible. Moreover [9] states that load-balancing should be a

network primitive, not an add-on, and presents a prototype dis-

tributed load-balancer based on this principle.

[10] , shows that the controller should exploit switch support

for wildcard rules for a more scalable solution that directs large

aggregates of client traffic to server replicas. [10] also presents al-

gorithms that compute concise wildcard rules that achieve a target

distribution of the traffic and automatically change load-balancing

policies without disrupting existing connections. Furthermore, the

authors implement these algorithms on top of the NOX OpenFlow

controller, evaluate their effectiveness, and propose avenues for

further research.

The work presented in [11] shows a system that re-configures

the network’s data plane to match current traffic demands by cen-

trally controlling the traffic that each service sends on a back-

bone connecting data-centres. [11] develops a novel technique that

Table 1

Performance metrics of the traffic for 1-queue and 3-queues configurations.

Performance metric Queue configuration

1-queue 3-queue

BF - packet loss 25% 71 .16%

DF1 - percentage of flows matching the deadline 11 .43% 74 .29%

DF2 - percentage of flows matching the deadline 17 .39% 19 .57%

leverages a small amount of scratch capacity on links to apply up-

dates in a provably congestion free manner, without making any

assumptions about the order and timing of updates at individual

switches. Further, to scale to large networks in the face of limited

forwarding table capacity, [11] greedily selects a small set of en-

tries that can satisfy current demands and updates this set without

disrupting traffic.

Reference [12] analyses a partially deployed SDN network (a

mix of SDN and non-SDN devices) and shows how to exploit the

centralized controller to get significant improvements in network

utilization as well as to reduce packet losses and delays. [12] shows

that these improvements are possible even in cases where there is

only a partial deployment of SDN capability in a network. The au-

thors formulate the SDN controller’s optimization problem for traf-

fic engineering with partial deployment and propose a fast Fully

Polynomial Time Approximation Schemes (FPTAS) to solve it.

This last problem is also tackled in [13] that introduces a traffic

management method to divide, or to “slice”, network resources to

match user requirements. [13] presents an alternative to resort to

low-level mechanisms such as Virtual LANs, or to interpose com-

plicated hypervisors into the control plane, by introducing an ab-

straction that supports programming isolated slices of the network.

The semantics of slices ensures that the processing of packets on a

slice is independent of all other slices. They define their slice ab-

straction, develop algorithms to compile slices, and illustrate their

use by using examples. In addition, [13] describes a prototype im-

plementation and a tool to automatically verify formal isolation

properties.

In our previous work [6] , we propose a solution based on

SDN, which implements a software strategy to cope with non-

conformant traffic flows inside a class-based system. This approach

is therefore independent of the underlying hardware, as it is con-

ceived to run as an algorithm inside the SDN controller. The pro-

posed strategy will manage non-conformant flows, based on a set

of statistic data gathered by a modified version of the Beacon

controller, in order to mitigate the quality degradation of flows

traversing the network.

In order to support traffic engineering in the SDN environment,

OpenFlow Management and Configuration Protocol (OF-Config) has

been proposed. OF-Config [14] is a protocol developed by the

Open Networking Foundation used to manage physical and virtual

switches in an OpenFlow environment. This tool gives network en-

gineers an overall view of the network and also provides the ability

to set policies and to manage traffic across devices.

3. Motivations

Some approaches consider a single queue for each outgoing in-

terface. In order to support QoS mechanisms and traffic differen-

tiation, it is common to configure multiple queues in advance [3] .

The importance of traffic differentiation is highlighted by the first

group of simulations (Table 1) reported in the following.

Flow entries mapped to a specific queue will be treated accord-

ing to that queue’s configuration in terms of service rate. Most

of the previously mentioned approaches assumes the ability of

SDN/OpenFlow to set the service rate of the queues in each SDN

Download English Version:

https://daneshyari.com/en/article/6882917

Download Persian Version:

https://daneshyari.com/article/6882917

Daneshyari.com

https://daneshyari.com/en/article/6882917
https://daneshyari.com/article/6882917
https://daneshyari.com

