
Computer Networks 89 (2015) 90–106

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

The Good, the Bad and the WiFi: Modern AQMs in a residential

setting

Toke Høiland-Jørgensen∗, Per Hurtig, Anna Brunstrom

Department of Mathematics and Computer Science, Karlstad University, 651 88 Karlstad, Sweden

a r t i c l e i n f o

Article history:

Received 16 February 2015

Revised 4 July 2015

Accepted 28 July 2015

Available online 31 July 2015

Keywords:

Active queue management

Fairness queueing

Bufferbloat

Latency

Performance measurement

Wireless networks

a b s t r a c t

Several new active queue management (AQM) and hybrid AQM/fairness queueing algorithms

have been proposed recently. They seek to ensure low queueing delay and high network good-

put without requiring parameter tuning of the algorithms themselves. However, extensive ex-

perimental evaluations of these algorithms are still lacking. This paper evaluates a selection

of bottleneck queue management schemes in a test-bed representative of residential Internet

connections of both symmetrical and asymmetrical bandwidths as well as WiFi. Latency under

load and the performance of VoIP and web traffic patterns are evaluated under steady state

conditions. Furthermore, the impact of the algorithms on fairness between TCP flows with

different RTTs, and also the transient behaviour of the algorithms at flow startup is examined.

The results show that while the AQM algorithms can significantly improve steady state perfor-

mance, they exacerbate TCP flow unfairness. In addition, the evaluated AQMs severely strug-

gle to quickly control queueing latency at flow startup, which can lead to large latency spikes

that hurt the perceived performance. The fairness queueing algorithms almost completely al-

leviate the algorithm performance problems, providing the best balance of low latency and

high throughput in the tested scenarios. However, on WiFi the performance of all the tested

algorithms is hampered by large amounts of queueing in lower layers of the network stack

inducing significant latency outside of the algorithms’ control.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ensuring low latency, and in particular consistently low

latency, in modern computer networks has become increas-

ingly important over the last several years. As more interac-

tive applications are deployed over the general Internet, this

trend can be expected to continue. Several factors can con-

tribute to unnecessary latency (for a survey of such factors,

see [1]); in this paper we focus on the important factor of

excessive queueing delay, particularly when the network is

congested.

∗ Corresponding author. Tel.: +46547001611.

E-mail addresses: toke.hoiland-jorgensen@kau.se (T. Høiland-Jørgensen),

per.hurtig@kau.se (P. Hurtig), anna.brunstrom@kau.se (A. Brunstrom).

Recent re-emergence of interest in the problem of

congestion-induced excessive queueing latency has, to a

large extent, been driven by the efforts of the bufferbloat

community [2,3], which has also worked to develop tech-

nical solutions to mitigate it. In short, bufferbloat is a term

used to describe the effect that occurs when a network bot-

tleneck is congested and large buffers fill up and do not drain,

thus inducing a persistent queueing delay that can be much

larger than the path round-trip time. Since the inception of

the bufferbloat community effort, more and more people in

both academia and industry are becoming aware of the prob-

lem; and several novel queue management schemes have

been proposed to combat the problem.

These new queue management schemes seek to pro-

vide both low latency and high goodput, without requiring

http://dx.doi.org/10.1016/j.comnet.2015.07.014

1389-1286/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.comnet.2015.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.07.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:toke.hoiland-jorgensen@kau.se
mailto:per.hurtig@kau.se
mailto:anna.brunstrom@kau.se
http://dx.doi.org/10.1016/j.comnet.2015.07.014
http://creativecommons.org/licenses/by-nc-nd/4.0/


T. Høiland-Jørgensen et al. / Computer Networks 89 (2015) 90–106 91

the extensive parameter tuning that was needed for earlier

schemes like Random Early Detection (RED) [4]. The schemes

include new active queue management (AQM) algorithms,

such as Controlled Delay (CoDel) [5] and Proportional In-

tegral Controller Enhanced (PIE) [6]. In addition, the older

Adaptive RED (ARED) [7] algorithm has seen revival attempts

for this use.

Most previous evaluations of these algorithms have been

based on simulation studies. We extend this by comparing

more algorithms (seven in total), both pure AQM algorithms

and fairness queueing scheduling algorithms. In addition, we

examine more traffic scenarios and application behaviours.

Finally, we provide an updated examination of actual running

code (the Linux kernel, version 3.14), which, due to the wide

availability and open nature of the code, can be considered a

real-world reference implementation for the algorithms. For

all experiments, we provide access to the experimental data,

and the tools to replicate them, online.1

We present our analysis in three separate parts: the Good,

the Bad and the WiFi. First, the Good: we compare steady

state behaviour of the algorithms in a mix of traffic scenarios

designed to be representative of a residential Internet set-

ting: measuring latency under load, and real-world applica-

tion performance of VoIP and HTTP applications, with mini-

mal tuning of the algorithms applied. The tested algorithms

perform significantly better than FIFO queueing in these

scenarios.

Second, the Bad: we test the impact of the AQMs on fair-

ness between TCP flows of unequal RTT, and analyse the tran-

sient behaviour of the algorithms when flows start up. We

compare the goodput of four flows with RTTs varying al-

most two orders of magnitude. We find that the AQM algo-

rithms exacerbate the tendency of unfairness between the

TCP flows compared to FIFO queueing. We also look at the

development of measured delay over time when competing

TCP flows start up and start to claim bandwidth at the bot-

tleneck link. This analysis shows that two of the AQM algo-

rithms (PIE and CoDel) have severe issues in quickly control-

ling the induced delay, showing convergence times of several

seconds with very high delay spikes when the flows start up.

Finally, the WiFi: recognising that wireless networks play

an increasing role in modern residential networks, we eval-

uate the algorithms in a setup where a WiFi link constitutes

part of the tested path. We find that the algorithms fail to

limit latency in this scenario, and it is quite clear that more

work is needed to effectively control queueing in wireless

networks.

The analysis of these three aspects of AQM behaviour con-

tributes to a better understanding of residential network be-

haviour. It points to several areas that are in need of further

evaluation and more attention from algorithm developers.

One possible solution that has been deployed with promis-

ing results [8] is fairness queueing, exemplified by algorithms

such as Stochastic Fairness Queueing (SFQ) [9] or the hybrid

AQM/fairness queueing of fq_codel [10]. Hence, we have in-

cluded three such algorithms in our evaluations along with

the AQM algorithms. We find that they give vastly superior

performance when compared with both FIFO queueing and

1 http://www.cs.kau.se/tohojo/good-bad-wifi/.

the tested AQM algorithms, making the case that these types

of algorithms can play an important role in the efforts to con-

trol queueing delay.

The rest of the paper is structured as follows: Section 2

discusses related work. Section 3 presents the experimen-

tal setup and the tested path characteristics, and Section 4

describes the tested algorithms. Section 5 presents the mea-

surements of steady-state behaviour and their results, while

Section 6 does the same for the experiments with fairness

and transient behaviour. Section 7 covers WiFi and finally,

Section 8 concludes the paper and outlines future work.

2. Related work

A large number of AQM algorithms have been proposed

over the last two decades, employing a variety of approaches

to decide when to drop packets; for a comprehensive sur-

vey, see [11]. Similarly, several variants of fairness queueing

have been proposed, e.g. [12–14]. We have limited our atten-

tion to those algorithms proposed as possible remedies to the

bufferbloat problem over the last several years. This section

provides an overview of previous work on evaluating these

algorithms and their effectiveness in combating bufferbloat.

The first evaluations of the AQM algorithms in question

were performed by their inventors, who all publish exten-

sive simulation results comparing their respective algorithms

to earlier work [5–7]. All simulations performed by the al-

gorithm inventors examine queueing delay and throughput

tradeoffs in various straightforward, mainly bulk, traffic sce-

narios. Due to being published at different times and with

different simulation details, the results are not easily com-

parable, but overall, the authors all find that their proposed

algorithms offer tangible improvements over the previously

available algorithms.

In an extensive ns2-based simulation study of AQM per-

formance in a cable modem setting [15], White compares

CoDel, PIE and two hybrid AQM/fairness queueing algo-

rithms, SFQ-CoDel and SFQ-PIE. Various traffic scenarios

were considered, including gaming, web and VoIP traffic as

well as bulk file transfers. The simulations focus specifically

on the DOCSIS cable modem hardware layer, and several of

the algorithms are adjusted to better accommodate this. For

instance, the PIE algorithm has more auto-tuning intervals

added, and the fairness queueing algorithms have the num-

ber of queues decreased. The study finds that all three algo-

rithms offer a marked improvement over FIFO queueing. The

study concludes that PIE offers slightly better latency perfor-

mance than CoDel but has some issues with bulk TCP traf-

fic. Finally, the study finds that SFQ-CoDel and SFQ-PIE offer

very good performance in many cases, but note some issues

in specific scenarios involving many BitTorrent flows.

Khademi et al. [16] have performed an experimental eval-

uation of CoDel, PIE and ARED in a Linux testbed. The ex-

periments focus on examining the algorithms at a range of

parameter settings and measure bulk TCP transfers and the

queueing delay experienced by the packets of the bulk TCP

flows themselves. The paper concludes that ARED is compa-

rable to PIE and CoDel in performance.

Rao et al. [17] perform an analysis of the CoDel algorithm

combined with a simulation study that compares it to the

http://www.cs.kau.se/tohojo/good-bad-wifi/


Download English Version:

https://daneshyari.com/en/article/6882985

Download Persian Version:

https://daneshyari.com/article/6882985

Daneshyari.com

https://daneshyari.com/en/article/6882985
https://daneshyari.com/article/6882985
https://daneshyari.com

