
Scalable and elastic total order in content-based
publish/subscribe systems

Xingkong Ma, Yijie Wang ⇑, Xiaoqiang Pei, Fangliang Xu
Science and Technology on Parallel and Distributed Processing Laboratory, College of Computer, National University of Defense Technology, Changsha,
Hunan 410073, PR China

a r t i c l e i n f o

Article history:
Received 5 June 2014
Received in revised form 16 March 2015
Accepted 6 April 2015
Available online xxxx

Keywords:
Total order
Publish/subscribe
Content-based
Data dissemination
Cloud computing

a b s t r a c t

Total order as a messaging guarantee scheme ensures that events sent to a set of sub-
scribers are delivered by these subscribers in the same order. It has become increasingly
important in content-based publish/subscribe (pub/sub) systems. Due to the large-scale
live content and the churn workloads in the big data era, current emergency applications
present a new challenge: how to provide a scalable and elastic total order service in con-
tent-based pub/sub systems. Most existing total order approaches cannot adapt to the
churn workloads, and generate high delivery latency in the face of high arrival rate of live
content. To this end, we propose a scalable and elastic total order service, called SETO, for
content-based pub/sub systems in the cloud computing environment. SETO uses a two-
layer pub/sub framework to decouple the event matching service and the total order ser-
vice. In this framework, events are forwarded to their interested subscribers by multiple
parallel servers. Through a preceding graph building technique, non-conflicting events in
the same server are allowed to be delivered simultaneously, which greatly reduces the
delivery latency. The performance-aware provisioning technique in SETO elastically
adjusts the scale of servers to adapt to the churn workloads. To evaluate the performance
of SETO, tens of servers and thousands of subscribers are deployed in our CloudStack
testbed. Extensive experiments confirm that SETO can linearly reduce the delivery latency
with the growth of servers, adaptively adjust the scale of servers in less than 5 s, and sig-
nificantly outperforms the state-of-the-art approaches under diverse parameter settings.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Publish/subscribe (pub/sub) model has received increas-
ing attention to build large-scale distributed systems
through decoupling senders and receivers in space, time
and synchronization [1]. In publish/subscribe systems, sub-
scribers express their interests in the form of subscriptions,

and publishers publish their live content in the form of
events. Thus, the system matches events against subscrip-
tions and forwards events to the interested subscribers.

Current content-based pub/sub systems do not natively
offer strong guarantees about the total order of events.
Informally, total order ensures that events sent to a set of
subscribers are delivered by all these subscribers in an uni-
form order. There are many pub/sub applications that
require total order to ensure unavoidable concurrency.
For instance, in network-centric warfares, the early
warning radar aircraft sends operational instructions to
multiple combat units. It would lead to fatal damage for

http://dx.doi.org/10.1016/j.comnet.2015.04.001
1389-1286/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +86 13308491230.
E-mail addresses: maxingkong@nudt.edu.cn (X. Ma), wangyijie@nudt.

edu.cn (Y. Wang), xiaoqiangpei@nudt.edu.cn (X. Pei), xuflnk@gmail.com
(F. Xu).

Computer Networks xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

Please cite this article in press as: X. Ma et al., Scalable and elastic total order in content-based publish/subscribe systems, Comput. Netw.
(2015), http://dx.doi.org/10.1016/j.comnet.2015.04.001

http://dx.doi.org/10.1016/j.comnet.2015.04.001
mailto:maxingkong@nudt.edu.cn
mailto:wangyijie@nudt.edu.cn
mailto:wangyijie@nudt.edu.cn
mailto:xiaoqiangpei@nudt.edu.cn
mailto:xuflnk@gmail.com
http://dx.doi.org/10.1016/j.comnet.2015.04.001
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.comnet.2015.04.001


these units to execute uncooperative operations due to dif-
ferences in the order they receive instructions. In dis-
tributed coordination service [2], multiple update
operations pointing to the same object may arrive at the
servers simultaneously. It would bring inconsistent views
among replicated servers if these servers execute update
operations in different orders. Another set of examples that
need total order are for fairness. For instance, players in
distributed online games [3] receive publications from
each other to update their states, such that they have the
consistent game views. It would be unfair for players to
make decisions if they receive publications in different
orders. Similarly, investors in the stock market are notified
the updates of trade volumes and prices [4]. It is necessary
to receive the same order of updates for investors.
Otherwise, different stock market views caused by out-
of-order updates lead to unfair trades.

In the big data era, providing total order primitive in
content-based pub/sub systems is becoming a challenging
problem. Firstly, the high arrival rate of live content
requires the total order algorithm to be extremely scalable.
For instance, NWS [5] provides up-to-the-minute weather
information to subscribers in any region in America. As the
arrival rate of live content increases, an inefficient total
order algorithm would lead to a high delivery latency to
subscribers, which makes the publications out-of-date.
Secondly, the churn workload requires the total order algo-
rithm to provide elastic schemes to reach a high perfor-
mance price ratio. Churn workload mean that the arrival
rate of events may frequently change in many emergency
applications. For instance, in a smart transportation system
[6], millions of messages are generated during peak hours,
while few number of messages are generated during off-
peak hours. In this scenario, it would either lead to low
delivery throughput during peak hours or waste comput-
ing resource during off-peak hours if a fixed number of ser-
vers are deployed.

Existing total order algorithms offer diverse ordering
semantics. However, most of them are not applicable to
our context. This mainly stems from the following two rea-
sons. The first reason is that many total order algorithms are
designed for a single destination group [7–13] or a limited
number of explicit destination groups [14–17]. In contrast,
given n subscriptions, there are theoretically 2n groups in
content-based pub/sub systems. It will lead to large traffic
overhead and high delivery latency if we adopt these algo-
rithms to manage the exponentially increasing groups. The
second reason is that existing total order algorithms in con-
tent-based pub/sub systems [18–21] do not scale well with
the increasing arrival rate of live content. Events in these
algorithms need to traverse a specific network to be
matched and synchronized before being delivered, which
brings a high delivery latency as a large number of events
arrive at the system. Besides, existing content-based pub/-
sub systems [18–21] have no financial incentive to provide
elastic total order service, since the peers in these systems
are commonly autonomous users and they decide their
own behaviors (joining or leaving) freely.

Recently, cloud computing provides great opportunities
for real-time and reliable communication, and complex

computing. The cloud computing environment offers
infrastructure, platform and applications as services to
one or more tenant organizations, where the servers are
equipped with powerful computing capabilities and orga-
nized into high speed local networks. Many pub/sub sys-
tems [22–26] attempt to provide scalable and elastic
service in the cloud platform. However, these systems
focus on high event matching throughput, rather than
the total order among events.

Motivated by these factors, this paper presents a scal-
able and elastic total order service for content-based pub/-
sub systems in the cloud computing environment, called
SETO. From the perspective of the system, the framework
of SETO consists of two layers: the matching layer and
the delivery layer. The matching layer is responsible for
matching events against subscription and sending events
with their matched subscribers to the delivery layer. At
this layer, we employs SEMAS [23] to implement high
matching throughput. In SEMAS, through a hierarchical
multi-attribute space partition technique (called
HPartition), the content space is divided into multiple
hypercubes, each of which is managed by one server.
Subscriptions and events falling into the same hypercube
are matched with each other, such that the matching
latency can be greatly reduced. Besides, a performance-
aware detection technique (called PDetection) is proposed
in SEMAS to adaptively adjust the scale of servers based on
the churn workloads.

The delivery layer is responsible for total ordering
events and delivering them to their interested subscribers.
The main novelty of this layer lies in a preceding graph
building technique (called PGBuilder) and a performance-
aware provisioning technique (called PProvision). The first
aims to reduce the total order latency in a scalable manner.
In PGBuilder, subscribers are divided into multiple groups,
each of which is managed by a single server. That is, all ser-
vers of PGBuilder are able to detect total order conflicts
among events simultaneously, which greatly reduces the
delivery latency. Each server of PGBuilder constructs pre-
ceding graphs among arrival events, which can quickly
detect non-conflicting events and deliver them in a parallel
manner. Besides, to ensure reliable delivery, PGBuilder
provides a series of dynamics maintenance mechanisms.

The second aims to achieve elastic total order service.
Specifically, PProvision adjusts the scale of servers based
on the churn workloads. Through a linear extrapolation
method, each server estimates its own performance of
total ordering. When the performance of the worst server
is out of expectation, a number of servers are added or
removed from the system to reach a high performance
price ratio. The main novelty of PProvision is that it adjusts
the scale of servers according to the dynamic proportional
relation between the scale of servers and the performance
of the worst server, which can greatly reduce the reconfig-
uring latency. In contrast, PDetection of SEMAS adds or
removes servers one by one, which may lead to cascade
provisioning.

Moreover, we design and implement a prototype on our
CloudStack testbed. Extensive experiments based on a
CloudStack testbed verifies that SETO can linearly reduce

2 X. Ma et al. / Computer Networks xxx (2015) xxx–xxx

Please cite this article in press as: X. Ma et al., Scalable and elastic total order in content-based publish/subscribe systems, Comput. Netw.
(2015), http://dx.doi.org/10.1016/j.comnet.2015.04.001

http://dx.doi.org/10.1016/j.comnet.2015.04.001


Download English Version:

https://daneshyari.com/en/article/6883016

Download Persian Version:

https://daneshyari.com/article/6883016

Daneshyari.com

https://daneshyari.com/en/article/6883016
https://daneshyari.com/article/6883016
https://daneshyari.com

