
ARTICLE IN PRESS

JID: CSI [m5GeSdc; October 27, 2017;21:43]

Computer Standards & Interfaces 000 (2017) 1–13

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

White-box modernization of legacy applications: The oracle forms case

study

✩

Kelly Garcés a , 1 , ∗ , Rubby Casallas a , 1 , Camilo Álvarez a , 1 , Edgar Sandoval a , 1 ,
Alejandro Salamanca

b , 2 , Fredy Viera

b , 2 , Fabián Melo

b , 2 , Juan Manuel Soto

b , 2

a Department of Systems and Computing Engineering, School of Engineering, Universidad de los Andes, Bogota D.C., Colombia
b Asesoftware Ltda., Bogota D.C., Colombia

a r t i c l e i n f o

Keywords:

Industrial case study
Model-driven engineering (MDE)
Configuration
Quality attributes
Oracle forms
Java
.Net

a b s t r a c t

Software modernization consists of transforming legacy applications into modern technologies, mainly to mini-
mize maintenance costs. This transformation often produces a new application that is a poor copy of the legacy
due to the degradation of quality attributes, for example. This paper presents a white-box transformation ap-
proach that changes the application architecture and the technological stack without losing business value and
quality attributes. This approach obtains a technology agnostic model from the original sources, such a model
facilitates the architecture configuration before performing the actual transformation of the application into the
new technology. The architecture for the new application can be configured considering aspects such as data
access, quality attributes, and process. We evaluate our approach through an industrial case study, the gist of
which is the transformation of Oracle Forms applications —where the presentation layer is highly coupled to the
data access layer —to multitiered applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Software is constantly evolving; this evolution is motivated by dif-
ferent reasons such as the obsolescence of a technology, the pressure of
users, or the need to build a single coherent information system when
companies merge [2] . Our research lies in the field of software modern-

ization , a kind of evolution, that refers to the understanding and evolving
of existing software assets to maintain a large part of their business value
[3] .

In cooperation with industry partners, we have carried out projects
to tackle different modernization challenges: (1) Migration from Oracle

Forms to Java [1,4] ; (2) Restructuring of Java Enterprise Edition (JEE)
applications from monolithic architectures to microservices [5] ; and (3)
Maintenance of Ruby on Rails (RoR) applications developed by Agile
practitioners [6] . These projects used a variety of source technologies
(i.e., Oracle Forms, JEE, RoR), which led us to generalize the two main

✩ This paper is an expanded and revised version of the document entitled “White-box Modernization of Legacy Applications ” [1] presented in the International Conference on Model
and Data Engineering (MEDI) 2016 in Almería (Spain), held between September 21, and 23 2016. The paper extends the version that has appeared in the Conference as follows: (1)
Shows the studied problem and solution in their generic form; (2) Details each step of the modernization process, whilst former version mostly elaborates on the configuration step; (3)
Presents more results of the experimental evaluation; (4) Discusses how our approach is extensible to other type of applications; and (5) Includes a deep review of the state-of-the-art.

∗ Corresponding author.
E-mail address: kj.garces971@uniandes.edu.co (K. Garcés).

1 http://www.uniandes.edu.co/ .
2 http://www.asesoftware.com/ .

steps involved in any modernization: (1) Understanding and (2) trans-

forming . The generalization of the first step is described in [7] . In that
work, we propose an approach to generate architectural views that help
to understand the original application and delimit the modernization
scope. In turn, this paper presents the abstraction of the second step
(see Section 2), that is, how to configure the as-is to obtain a to-be that
is valid in the target technology, and generate the corresponding code.

In particular, this work deals with the transformation task when
manually developed. The problem arise as a result of rewriting excerpts
of legacy code from scratch —or even worst, of copying and pasting ex-
isting excerpts from one place to another — despite their similarity. Also,
developers have to switch from the modern IDE to the legacy IDE in or-
der to solve their questions related to the legacy implementation details.
Therefore, rewriting and switching are time consuming and error-prone.

We have studied commercial tools and research works that deal with
the translation problem (Section 7), and, therefore, are able to conclude
that their output code is difficult to maintain and evolve because they

https://doi.org/10.1016/j.csi.2017.10.004
Received 14 December 2016; Received in revised form 5 October 2017; Accepted 16 October 2017
Available online xxx
0920-5489/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: K. Garcés et al., Computer Standards & Interfaces (2017), https://doi.org/10.1016/j.csi.2017.10.004

https://doi.org/10.1016/j.csi.2017.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/csi
mailto:kj.garces971@uniandes.edu.co
http://www.uniandes.edu.co/
http://www.asesoftware.com/
https://doi.org/10.1016/j.csi.2017.10.004
https://doi.org/10.1016/j.csi.2017.10.004

K. Garcés et al. Computer Standards & Interfaces 000 (2017) 1–13

ARTICLE IN PRESS

JID: CSI [m5GeSdc; October 27, 2017;21:43]

mostly apply a black-box transformation approach [8] . The following
are the drawbacks of black-box transformation: (1) Lack of information,
which may hamper the proper execution of the application on a modern
platform; (2) Analyses to discover dead code that the developer would
want to avoid in the new application are rarely performed; (3) The abil-
ity to modify the user interface appears very late in the transformation
life cycle (i.e., once the code has already been generated); (4) Means to
see the transformation progress are uncommon in most of the related
work.

These drawbacks have motivated our proposal, which is a white-box
transformation process that focuses on the understanding of the legacy
application, but put in the terms of a technology agnostic model . Our work
targets stakeholder developers, so that they can use this model to config-
ure the target architecture in the early steps of the process, and indicate
the transformation progress. Even though it is likely that developers
modify the modern code in our approach in order to complete the im-
plementation of functionalities, the approach reduces the modifications
to be made at a code level because they can configure many aspects of
the architecture at a model level. The latter favors maintainability be-
cause most of the generated code follows default design patterns and
standards. We count the following among the concerns that can be con-
figured: data access, quality attributes (maintainability, usability, and secu-

rity), and configuration progress . Our approach is based on Model-Driven
Engineering (MDE) techniques that have been proven to improve pro-
ductivity and quality in migration processes [9–11] .

Furthermore, this article reports an instantiation of the approach in
the Oracle Forms technology (see Section 3), which is our most advanced
case study since it covered a pilot study developed in conjunction with a
Colombian company called Asesoftware. This real application allowed
us to identify the parts of the code that can be modernized in a fully
automated way and the elements that have to be manually changed by
developers.

We demonstrate the applicability of our approach by transforming
Oracle Forms applications into a multi-tier architecture (see Section 4).
The evaluation (see Section 5) covers a proof of concept and the pilot
study. In particular, the pilot study demonstrates that developers that
use the white-box method have an increased productivity and produce
higher quality code than developers that use a manual method. It is
worth noting that these developers are not Oracle Forms experts. We
have built an editor on top of the technology agnostic model to ease the
configuration. Section 6 discusses how our approach has been extended
to different Oracle Forms versions and to an additional target technol-
ogy (i.e., .Net), and elaborates on the necessary effort to extended it to
further technologies. Finally, Section 8 concludes the paper and outlines
future work.

2. Generic white-box transformation approach

As mentioned in the introduction, this section presents the gener-
alization of the transformation process (see Fig. 1). In the first step a
technology specific model is obtained from the legacy code. The sec-
ond step comprises transforming this model into a technology agnostic
model. In contrast to the former model —which is verbose and technol-
ogy specific —, the technology agnostic model conforms to a metamodel,
the concepts of which matter in the target architecture. Steps three to
six can be performed in an iterative manner. In each iteration, the devel-
oper can configure how to transform a set of legacy artifacts (third step),
and generate, complete, and test the corresponding new code (steps 4
to 6), until satisfying the scope of a given modernization project. As we
proposed in our previous work [4] , the decision of which artifacts are
included in each iteration is made in the understanding phase and de-
pends on aspects such as artifact dependencies and client requests. In
the remaining sections, we describe an instantiation of the approach in
the Oracle Forms technology.

3. Background of oracle forms case study

The case study comes from the “Forms Modernization ” project. Or-

acle Forms appeared towards the end of the 1980s and provides a rapid
application development environment plus a run-time environment.

A basic Forms application consists of forms accessed via a menu and,
in most cases, these forms have items that can be mapped to database
tables. Most of the database behavior (read/write/update/delete) is pre-
defined in Oracle Forms, thus avoiding the need to write too many lines
of code.

Oracle Forms enables programmers to develop database-centric func-
tionality, thus minimizing the need to program common functionality
like the CRUD (Create/Read/Update/Delete) operations that manage
records of database tables. Oracle Forms also makes it possible for de-
velopers to include PL/SQL code in the applications in order to enrich
their functionality beyond CRUD standard logic. PL/SQL is a procedural
programming language integrated with SQL. The PL/SQL code can be
executed by the database management system or directly by the Ora-
cle Forms environment (as code excerpts embedded in the form trigger
events or Oracle Forms Properties). This section is structured as follows:
first, it presents the architecture of Oracle Forms applications, and then
the modernization scope and target architecture defined in the project.

3.1. Source architecture

Fig. 2 illustrates the architecture of Oracle Forms applications. It is
client/server where the application is highly coupled to the database.
Events associated to components of the application (i.e., Form, Block,
Item) fire triggers. The components that appear in the Figure are de-
scribed below:

• Form : A Form is a collection of objects and code, which includes
windows, items, triggers, etc.

• Blocks : Represent logical containers for grouping related items into
a function unit to store, display and manipulate records of database
tables. Programmers configure blocks depending on the number of
tables from which they want to manipulate the form: (1) The way
to display a single database table in a form is to create a block.
This results in a master form . (2) The way to display two tables that
share a master-detail relationship (i.e., “One to Many ” relationship)
is through two blocks. Oracle Forms guarantees that the detail block
will display only records that are associated with the current record
in the master block. This results in a master/detail form .

• Item : Items display information to users and enable them to inter-
act with the application. Item objects include the following types:
button, check box, display item, among others.

• Trigger : A trigger object is associated to an event. It represents a
named PL/SQL function or procedure that is written in a form, block
or item.

• Menu : Is displayed as a collection of menu names appearing horizon-
tally under the application window title. There is a drop-down list
of commands under each menu name. Each command can represent
a submenu or an action.

3.2. Modernization scope

In the context of the Forms Modernization project, we automate the
transformation of master and master/detail forms. Given a form, we are
able to generate: (1) The corresponding graphical interface (except the
layout); (2) The CRUD logic; (3) The scaffolding code that calls PL/SQL
logic embedded in triggers. The transformation of PL/SQL code to mod-
ern language is the responsibility of the developer. We decided to leave
the layout out of our modernization project for two reasons: (1) In Ora-
cle Forms, the layout is implicit, therefore, it is necessary to implement
complex algorithms to discover the concrete interface [12] ; and (2) For
us, the development of such algorithms might not be worth the effort

2

Download English Version:

https://daneshyari.com/en/article/6883154

Download Persian Version:

https://daneshyari.com/article/6883154

Daneshyari.com

https://daneshyari.com/en/article/6883154
https://daneshyari.com/article/6883154
https://daneshyari.com

