
ARTICLE IN PRESS

JID: CSI [m5GeSdc; September 27, 2017;8:50]

Computer Standards & Interfaces 000 (2017) 1–6

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

Analysis of a mobile payment protocol with outsourced verification in

cloud server and the improvement

Yongjian Liao

∗ , Yichuan He , Fagen Li , Shijie Zhou

University of Electronic Science and Technology of China, Chengdu, China

a r t i c l e i n f o

Keywords:

Mobile payment

Signature

Bilinear maps

Securely outsourcing computation

Cloud computing

a b s t r a c t

Today, mobile payment is becoming one of the most frequently used approach to provide payment services under

business and financial organization via mobile devices, such as smart phone, ipad. However, the limited resources

of the mobile devices cause that it can not perform large-scale computing. Thus, it is a better way to outsource

securely some computation of mobile payment to the untrusted cloud server. Recently, Qin et al. proposed a

mobile payment protocol with outsourced verification in the untrusted cloud server. In this paper, we firstly

show that their protocol exists two issues: one is an unreasonable construction, which causes their protocol not

to be implemented; the other is that there is a colluding attack of customers and the untrusted cloud server at

outsourced verification phase, which causes the verification of their protocol to be insecure. Next, we improve

their protocol and analyze the security of our improved protocol.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

More and more financial-services apps and the availability of mo-
bile device drive the growth of mobile payment services. As one of the
modern components of mobile payment services, mobile wallet pro-
vides a very convenient way to allow the clients to conduct the pay-
ment via their mobile devices from anywhere and anytime. Obviously,
it is possible that mobile payment is becoming one of the most popu-
lar payment methods in the near future. However, mobile devices, such
as smart phone and ipad, which are limited-resource, can not perform

large-scale computing. Thus an easy and convenient method is to out-
source some complex computation of a mobile payment protocol to an
untrusted cloud server.

Recently, Qin et al. [2] proposed an efficient privacy-preserving mo-
bile payment protocol with outsourced verification in untrusted cloud
server. There were four main entities directly involving in the inter-
active protocol. A payment service provider(PSP), a customer, a mer-
chant and an untrusted cloud server. A payment service provider gen-
erates the pseudo public/private key of entities(the customer client and
the merchant). The customer wants to buy goods or services of the
merchant. The merchant needs to sell some goods or services to the
customer. The untrusted cloud server provides some outsourced com-
puting to reduce computation cost of the merchant(or the customer)
in payment phase. According to the practical security requirements,
the protocol must satisfy the following security properties: unforge-

∗ Corresponding author.

E-mail address: liaoyj@uestc.edu.cn (Y. Liao).

ability, anonymity, traceability and non-repudiation. The unforgeabil-
ity property guarantees that any payment and receipt are not forged;
the anonymity property guarantees that the merchant(or the customer)
does not know the real identity of the customer(or the merchant); the
traceability property guarantees that the PSP knows the real identity of
entities of transactions from the payment and the receipt.

However, aim to the Qin et al. ’s construction, it is not enough for the
protocol to only satisfy the above security properties. This is because
the cloud server is untrusted, and the value replying from the cloud
server may be “false ” which can cheat the merchant(or customer). We
describe a practical attack in the following scenario, which is called a
colluding attack. A customer Alice wants to buy an Apple Mac Book
Air of the merchant Bob, which needs 1700 dollars. When both of them

agree on this price, Alice signs Payment to generate her “signature ” �̃�,
which includes a transaction identity, price to be paid and some pseudo
identities of Alice and Bob. Then Alice sends Payment and �̃� to Bob, and
at the same time she also sends Payment and �̃� to the cloud server and
pays 700 dollars to the cloud server in order to let the cloud server help
her to cheat Bob. Bob first generates ̃𝜎′ by simply randomizing the ̃𝜎, and
then sends �̃�′ to the cloud server. At last, when the cloud server receives
�̃�′ and �̃� even if �̃� is invalid, it also can compute the values needed by
Bob from �̃�′ and �̃� if the construction of generating �̃�′ in outsourced
verification phase is too simple. Since there is no verification mechanism

for the outsourced verification of the untrusted cloud server in order to
reduce the computation cost of Bob, it is possible that Bob will accept
the invalid signature �̃�. Finally, Alice pays 700 dollars to buy the Apple

https://doi.org/10.1016/j.csi.2017.09.008

Received 4 January 2017; Received in revised form 24 September 2017; Accepted 24 September 2017

Available online xxx

0920-5489/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Y. Liao et al., Computer Standards & Interfaces (2017), https://doi.org/10.1016/j.csi.2017.09.008

https://doi.org/10.1016/j.csi.2017.09.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/csi
mailto:liaoyj@uestc.edu.cn
https://doi.org/10.1016/j.csi.2017.09.008
https://doi.org/10.1016/j.csi.2017.09.008

Y. Liao et al. Computer Standards & Interfaces 000 (2017) 1–6

ARTICLE IN PRESS

JID: CSI [m5GeSdc; September 27, 2017;8:50]

Cloud Server

PSP

Customer
Alice

IDA

δ '

DA

IDB

DB

δ '

= Payment Request
= Paid
= Receipt

= Refund Request
Merchant

Bob

Fig. 1. System model.

Mac Book Air which worths 1700 dollars, but Bob loses the device and
gets nothing. Unfortunately, the protocol of Qin et al.is insecure on the
colluding attack.

In the paper, we firstly point out that the construction of their proto-
col is unreasonable, which causes the protocol not to be implemented.
Then we show their protocol is not secure under the colluding attack
of client and untrusted cloud server at outsourced verification phase.
Finally, we improve their protocol and analyze the security of our im-
proved protocol.

The rest of this paper is organized as follows. In Section 2 we recall
the system model and security requirement of the protocol and the bi-
linear pairing. Then we recall Qin et al. ’s mobile payment protocol and
prove it isn ’t secure in Section 3 . We propose our improved protocol and
analyze its security and efficiency in Section 4 . Finally, we conclude the
paper in Section 5 .

2. Preliminaries

2.1. System model

In this section, in order to make the mobile payment protocol with
outsourced verification (MPP-OV) in cloud server [2] be clear. We sim-
plify their complex system model and omit the entities which are not
necessary to directly use in MPP-OV protocol. The MPP-OV protocol in-
cludes the following four entities. The interactions of the four entities
are described in Fig. 1 .

• Client (or Customer). An entity, Alice, is one who wants to purchase
goods or services provided by a merchant.

• Merchant: An entity, Bob, is a merchant who wants to sell goods or
services to the client Alice.

• Payment Service Provider (PSP). A trusted entity, which generates
the pseudo identity and corresponding partial private key of entities,
is responsible for the security and privacy of the payment informa-
tion.

• Untrusted Cloud Server Verification Provider (CSVP). An untrusted
entity carries out outsourcing the computation of verification to re-
duce the computation overhead of merchants or clients.

Then, we recall the MPP-OV protocol, which is an interactive proto-
col divided into three phases: Setup and Key Generation Phase, Payment

Transaction Phase and Outsourced Verification Phase .

• Setup and Key Generation Phase . The PSP takes as input a security pa-
rameter k to generate the public parameters Params , a master key mk

and the description of a finite signature space and a finite message
space. And it keeps mk secretly. Then it takes as input the real iden-
tity ID ∈ {0, 1} l of the client 1 and the master key mk , and outputs a

1 In the paper [2] , the client ’s real identity ID ∈ {0, 1} ∗ , this construction has some de-

ficiency. Because in Setup and Key Generation Phase of their protocol the PSP used ID ⊕H (·)

partial private key SK ID and a pseudo identity P ID of the client and a
public key PK generated by his/her self, where l is a positive integer.

• Payment Transaction Phase . When the client Alice and the merchant
Bob agree on goods or services and its amount paid, Alice will sign
them by using her partial private key and private key generated by
herself to perform the payment transaction. At the end of payment
transaction phase, Alice receives an acknowledgment of a receipt,
which is signed by Bob.

• Outsourced Verification Phase . This phase is not an independent phase.
Due to the limited resources of mobile devices, the merchant Bob
adopts cloud server-aided verification technique to verify the valid-
ity of a signature of the client Alice in Payment Transaction Phase of
the protocol. That is to say, the untrusted cloud server could help
Bob (or Alice) to compute some value in order to reduce the compu-
tation overhead of verification of Bob (or Alice).

In order to maintain mobile payment security, the protocol should
be able to satisfy the following requirements [2] :

• Unforgeability: Only legal users can make transactions. In other
words, no one can impersonate any user to submit a fake payment
or a fake or illegal receipt.

• Anonymity: The identities of users must be kept confidential.
• Traceability: The merchant cannot deny the received payment, while

the customer cannot deny her confirmed payment. Otherwise, the
PSP can be used to trace them.

• Non-repudiation: The merchant cannot repudiate the origin and the
correctness of the receipt information. Also no customer can deny
his/her confirmed payment.

2.2. Bilinear map

In this section, we firstly recall some concepts about a bilinear
map(or pairing) below. Let G 1 and G 2 be an additive cyclic group and a
multiplicative cyclic group of the prime order p respectively. And P is a
generator of G 1 . A map e : G 1 ×G 1 →G 2 is called an admissible bilinear
map [1] if it satisfies the following properties:

• Bilinear: For any P ∈G 1 and 𝑎, 𝑏 ∈ ℤ 𝑝 , 𝑒 (𝑎𝑃 , 𝑏𝑃) = 𝑒 (𝑃 , 𝑃) 𝑎𝑏 .
• Non-degenerate: e (P, P) ≠1, where 1 is the identity element of G 2 .
• Computable: There is an efficient algorithm to compute e (P, P) for

any P ∈G 1 .

The bilinear Diffie–Hellman (BDH) problem in (p, G 1 , G 2 , e) is de-
scribed as follows:

Given P, aP, bP, cP for random elements a, b , 𝑐 ∈ ℤ

∗
𝑝
, there is a prob-

abilistic polynomial-time (PPT) algorithm which outputs e (P, P) abc .
Defintion 1 . Suppose is a PPT algorithm. It outputs e (P, P) abc ∈G 2

with the advantage:

𝐴𝑑𝑣 BDH

(𝑘) = Pr [(𝑃 , 𝑎𝑃 , 𝑏𝑃 , 𝑐𝑃) = 𝑒 (𝑃 , 𝑃) 𝑎𝑏𝑐 ∶ 𝑃 , 𝑎𝑃 , 𝑏𝑃 , 𝑐𝑃 ∈ 𝐺 1] .

We say that the BDH assumption holds if for any PPT algorithm , its
advantage 𝐴𝑑𝑣 BDH

(𝑘) is negligible in the parameter k .
The computational Diffie-Hellman (CDH) problem in G 1 is described

as follows:
Given P, aP, bP ∈G 1 for random elements a, b ∈ ℤ

∗
𝑝
, there is a PPT

algorithm which outputs abP .
Defintion 2 . Suppose is a PPT algorithm. It outputs abP ∈G 1 with

the advantage:

𝐴𝑑𝑣 CDH

(𝑘) = Pr [(𝑃 , 𝑎𝑃 , 𝑏𝑃) = 𝑎𝑏𝑃 ∶ 𝑃 , 𝑎𝑃 , 𝑏𝑃 ∈ 𝐺 1] .

We say that the CDH assumption holds if for any PPT algorithm , its
advantage 𝐴𝑑𝑣 CDH

(𝑘) is negligible in the parameter k .

to hide the identity ID for some hash function H (·). In general, the length of the output

of hash function H (·) is constant. Thus, ID ∈ {0, 1} ∗ can cause binary operation ⊕ not to

perform.

2

Download English Version:

https://daneshyari.com/en/article/6883164

Download Persian Version:

https://daneshyari.com/article/6883164

Daneshyari.com

https://daneshyari.com/en/article/6883164
https://daneshyari.com/article/6883164
https://daneshyari.com

