
Mobile cloud security: An adversary model for lightweight browser
security

Shasi Pokharel a, Kim-Kwang Raymond Choo b,a,n, Jixue Liu a

a School of Information Technology & Mathematical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
b Department of Information Systems and Cyber Security, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0631, USA

a r t i c l e i n f o

Article history:
Received 7 March 2016
Received in revised form
18 August 2016
Accepted 8 September 2016
Available online 9 September 2016

Keywords:
Mobile cloud security
Lightweight browser security
UC Browser
Dolphin
CM Browser
Samsung Stock Browser

a b s t r a c t

Lightweight browsers on mobile devices are increasingly been used to access cloud services and upload /
view data stored on the cloud, due to their faster resource loading capabilities. These browsers use client
side efficiency measures such as larger cache storage and fewer plugins. However, the impact on data
security of such measures is an understudied area. In this paper, we propose an adversary model to
examine the security of lightweight browsers. Using the adversary model, we reveal previously un-
published vulnerabilities in four popular light browsers, namely: UC Browser, Dolphin, CM Browser, and
Samsung Stock Browser, which allows an attacker to obtain unauthorized access to the user’s private
data. The latter include browser history, email content, and bank account details. For example, we also
demonstrate that it is possible to replace the images of the cache in one of the browsers, which can be
used to facilitate phishing and other fraudulent activities. By identifying the design flaw in these
browsers (i.e. improper file storage), we hope that future browser designers can avoid similar errors.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, we have seen a rapid shift in Internet browsing
behaviors from the use of personal computers (PCs) to mobile
devices, particularly accessing cloud services and storing data in
the cloud [20,45,23]. In other words, Internet browsing is in-
creasingly being conducted on mobile devices [51]. This has also
resulted in an increasing use of lightweight browsers on mobile
devices.

Lightweight browsers are popular for their speedy resource
loading capabilities, particularly for viewing large media files or
for gaming. However, the trade-off is reduced user functionalities
and weakened security mechanisms [57,58]. For example, basic
browser security requirements defined by W3C [46] implemented
in typical browsers, such as Google Chrome and Mozilla Firefox,
may not be installed on the lightweight browsers [3].

Browsers are security sensitive applications, as they are able to
access personally identifiable information (PII) and sensitive data
such as bank account details. Browser communications can be
targeted at various stages of the communication, such as on client
devices, during network transmission, and at the server. Security

issues and mitigation strategies relating to the network and the
server have gained significant interest (see [14,15,52]). The se-
curity of browsers in mobile devices, however, appears to be an
understudied area. For example, the question whether cache and
other files are securely stored by browsers so that they cannot be
accessed by unintended person or apps has not been well studied
(e.g. are cache and other files encrypted or stored with the ap-
propriate file permission?).

In this paper, we attempt to evaluate the security of user in-
formation stored by the lightweight browsers on mobile devices.
Using an adversary model adapted from the security literature, we
examine four popular lightweight browsers for Android device
and reveal previously unpublished vulnerabilities. We regard the
contributions to be two-fold:

1) An adversary model designed to study the security of light-
weight mobile browser; and

2) Identification of previously unpublished vulnerabilities in four
lightweight browsers.

The rest of the paper is organized as follows. Background ma-
terials and related literature are described in Sections 2 and 3,
respectively. In Section 4, we present the proposed adversary
model and the prototype app. The experiment setup and findings
are respectively outlined in Sections 5 and 6. The last section
discusses potential mitigation strategies and concludes the paper.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/csi

Computer Standards & Interfaces

http://dx.doi.org/10.1016/j.csi.2016.09.002
0920-5489/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author at: Department of Information Systems and Cyber Se-
curity, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-
0631, USA. Tel.: þ1.210.458.7876.

E-mail address: raymond.choo@fulbrightmail.org (K.-K. Choo).

Computer Standards & Interfaces 49 (2017) 71–78

www.sciencedirect.com/science/journal/09205489
www.elsevier.com/locate/csi
http://dx.doi.org/10.1016/j.csi.2016.09.002
http://dx.doi.org/10.1016/j.csi.2016.09.002
http://dx.doi.org/10.1016/j.csi.2016.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.09.002&domain=pdf
http://dx.doi.org/10.1016/j.csi.2016.09.002


2. Background: Mobile browsers

Browsing a webpage requires the loading of multiple sets of
resources, such as HTML, CSS, JavaScript and media files. For ex-
ample, according to Wang et al. [54], loading of such resources can
be slower on mobile devices than on PCs due to the architectural
differences and computational constraints.

Speed during website browsing is a key user concern. For ex-
ample, a one second delay in webpage loading could reportedly
result in 11% reduction in webpage views and 16% reduction in
customer satisfaction [39]. Similar observations were echoed in
the studies by Amazon [33] and Google [10].

Lightweight browsers apply client side efficiency solutions to
improve the browsing speed, and consequently user's quality of
experience. This includes creating a larger cache storage and
avoiding any plugins that can delay the loading of web resources.
Cache is the temporary storage to save downloaded web resources.
If a user attempts to access a previously accessed same page or
URL, the browser checks whether the content exists in the cache. If
the contents exist, then the browser loads the resources from the
cache; thus, saving time and network resources.

Popular browsers, such as Google Chrome, Mozilla Firefox, and
Opera, use standard Web Storage to store cache data. Web Storage
was introduced as a part of HTML5 and is being standardized by
World Wide Web Consortium (W3C). Web Storage contains two
major parts, namely: Local Storage and Session Storage, whose
behavior is similar to that of persistent cookies and session cook-
ies, respectively. Session storage stores web resources until the
webpage is open. In the case of Local Storage, the generated cache
remains on the device even when the browser is closed [55].

In both PC and mobile device environments, Web Storage is
considered more secure than the native browser cache. According
to W3C, Web Storage can be used to store sensitive user in-
formation, if implemented properly [55]. On Android devices, Web
Storage typically uses the device's internal storage (e.g. /data/data/
PackageName/ directory). Therefore, the items stored in these
cache storage cannot be accessed by other users or apps, with the
exception of the owner's app.

However, Web Storage is limited by cache size. For general use,
W3C recommends the use of 5MB storage size per website,
but this can be reduced when implemented on mobile devices.
Lightweight browsers mostly rely on large cache storage to

improve the browser’s loading speed. Therefore, these browsers
store large amount of cache data outside of Web Storage, often in
external storage (e.g. SD card).

For Android devices, internal storage is generally considered a
more secure storage location for application data, because, by
default, stored data can be accessed or modified only by the
creator app. In comparison, any resources, stored in external sto-
rage can be accessed, modified or deleted by any applications that
have READ_ EXTERNAL_STORAGE Permission [16].

3. Related work

Web (application) security has been a research focus for a
number of years [40]. Browsers for PCs, laptops and mobile devices
share the underlying rules for loading webpages and commu-
nicating with servers. Therefore, existing literature on browser
security tend to be focused on ‘traditional’ browsers (for PCs and
laptops), as well as focusing on either network security or on de-
tecting malicious websites (see [18,19,21,24,50]).

In 2014, Wadkar, Mishra and Dixit proposed the ‘system call’
monitoring approach to prevent information leakage from the
browser [53]. System call is an interface between the browser
application and Operating System (Linux) kernel, which is invoked
during the execution of browser process. The researchers pro-
posed an intermediate layer between the Kernel and the applica-
tion layer that controls the system calls and filters the personal
information being leaked during the browsing.

Virvilis et al. [52] evaluated the effectiveness of the Blacklist
filtering approach on browsers, designed to prevent users from
visiting rouge or malicious webpages. In another related study,
Amrutkar et al. [2] presented a threat model, which allows the
discovery of architectural weakness on mobile devices and brow-
sers. The researchers demonstrated that attack vectors, such as
display ballooning, Cross Site Request Forgery (CSRF) and click-
jacking, can be used for phishing or directly stealing information
from the users’ device (Table 2).

More recently in 2015, Amrutkar, Traynor and van Oorschot [3]
evaluated the security indicators (based on the security guidelines
of W3C – [46]) used in popular mobile browsers. For example, they
check to determine whether the browser displays identity of the
site owner and certificate issuer and whether the browser uses the

Table 1
Lightweight browsers.

S. no. Browser Name Version No. in Google Play Store downloads (in millions;
as of Sep 2015)

Remarks

1. UC Browser 10.6.2 100–500
2. Dolphin 11.4.19 50–100
3. CM Browser 5.20.06 10–50
4. Samsung Stock

Browser
N/A N/A Pre-installed with Samsung mobiles, so total user number and applica-

tion version cannot be identified.

Table 2
Targeted cache and file storage locations of the browsers in the study.

Browser Targeted Cache Location Important Contents

Dolphin /sdcard/TunnyBrowser/cache/speeddial_covers URLS saved as speed dial
/sdcard/TunnyBrowser/cache/tablist_cache screenshot image files
/sdcard/TunnyBrowser/cache/webViewCache All cache files (HTML, CSS, JavaScript, media)

UC Browser /sdcard/UCDownloads/cache/ All cache files
/sdcard/UCDownloads/config/ TrafficStatus.db; contains client server communication timing and response
/sdcard/UCDownloads/offline/ ApplicationCache.db; contains data for cache loading management

CM Browser /sdcard/CheetahBrowser/.data/ Browsers URL history
Samsung Stock Browser /data/data/com.sec.android.app.sbrowser/files/ Screenshot image files

S. Pokharel et al. / Computer Standards & Interfaces 49 (2017) 71–7872



Download English Version:

https://daneshyari.com/en/article/6883191

Download Persian Version:

https://daneshyari.com/article/6883191

Daneshyari.com

https://daneshyari.com/en/article/6883191
https://daneshyari.com/article/6883191
https://daneshyari.com

