
A cloud service for COTS component-based architectures

Jesús Vallecillos, Javier Criado, Nicolás Padilla, Luis Iribarne
Applied Computing Group, University of Almería, Spain

a b s t r a c ta r t i c l e i n f o

Article history:
Received 3 February 2015
Received in revised form 16 November 2015
Accepted 28 November 2015
Available online xxxx

Software architecture management, especially in component-based web user interfaces is important to enhance
their run-time accessibility, dynamics and management. The cloud offers some excellent mechanisms for this
kind of systems, since software can be managed remotely, easy availability of the resources is ensured and
mass storage is possible. This article presents an infrastructure solution, based on the use of web services and
cloud computing, for managing COTS-based architectures.

© 2015 Elsevier B.V. All rights reserved.Keywords:
Cloud service
Software architectures
Component-based systems
COTS

1. Introduction

In general, software available on the web must increasingly be
changed, updated and adapted to user demands. Such software is some-
times built up from components, or component-based architectures
are used to describe its structure. In both approaches, they must be
accessible at any time, dynamic, managed at run-time and adaptable
to changes [5]. Web services and cloud computing offer an excellent in-
frastructure for this, and since the software can be managed remotely,
high resource availability is ensured and mass storage is possible. An
example of such architectures is component-based web interfaces,
which have the same requirements, and must be dynamic and adapt
thier structure to the user preferences. With this aim, new projects
and proposals have come up in the last few years to build customized
web User Interfaces (UI) by configuring the widgets the user wants to
visualize [25]. For these applications, the user has a Graphical User
Interface (GUI) available that can be configured to create a dashboard.
This type of GUI is built from graphical components of high or medium
granularity (that is, they are not simple buttons or textfields) that group
together some functionalities related to each other andmake upwidget-
based mashup applications [46,15], such as MyYahoo, Ducksboard or
Netvibes [42].

This led to our interest in developing an infrastructure for managing
component-based software architectures. In particular, our research
work is focused on dynamic management of component-based UIs.
The three pillars on which our proposal is based are therefore: CBSE
(Component-based Software Engineering), MDE (Model-Driven Engineer-
ing) and Cloud Computing. Component-based Software Engineering
[11] is a software engineering discipline that improves software devel-
opment by reusing it, contributing reliability, and reducing the time
required for creating such software. Contrary to traditional software

development, CBSE is focused on integrating previously developed
software components into the system following a bottom-up develop-
ment instead of a traditional top-down perspective. The concept of
component reuse and management is also present in standards [2].
Our proposal requires that the user interface be defined as a set of com-
ponents, in which each application component represents an individual
user interface component. This proposal follows a bottom-up perspec-
tive for developing (at run-time) the UI structure from components
available in one or more third-party repositories.

The UI components used in our proposal are called COTSgets, from
COTS (Commercial Off-The-Shelf) [28] and gadgets (understood as any
software that can work alone or as a piece of the architecture). A COTS
component is any coarse-grained component developed by third parties
available for building more complex systems. An example of a GUI
application developed by us under a Project of Excellence funded by
the Junta de Andalucía [Andalusian Government] [18] may be seen at
http://acg.ual.es/enia/COTSbasedArchitectureExample. This real appli-
cation will show the reader what a COTSget-based architecture looks
like. It can be tried out, and hopefully, the role of this kind of component
will be easier to understand.

The second pillar is Model-Driven Engineering. This engineering
discipline is focused on constructing models on different levels of
abstraction, facilitating software specification, and providing several
mechanisms for automating the development of the final product
using of model transformation techniques. Some systems developed
with these techniques attempt to provide software with adaptive capa-
bilities for dynamic reconfiguration of the models at run-time, so they
may act differently as the adapt to the circumstances of their execution,
such as changes in the user interaction, available resources, or execution
platforms [37,16]. In the particular domain of component-based soft-
ware systems, MDE techniques can facilitate architecture design and

Computer Standards & Interfaces xxx (2015) xxx–xxx

CSI-03082; No of Pages 19

http://dx.doi.org/10.1016/j.csi.2015.11.008
0920-5489/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

Please cite this article as: J. Vallecillos, et al., A cloud service for COTS component-based architectures, Comput. Stand. Interfaces (2015), http://
dx.doi.org/10.1016/j.csi.2015.11.008

http://dx.doi.org/10.1016/j.csi.2015.11.008
www.elsevier.com/locate/csi
http://dx.doi.org/10.1016/j.csi.2015.11.008
http://dx.doi.org/10.1016/j.csi.2015.11.008


development, for example, in defining their structure, component
behavior and relationships, interaction, or their functional and non-
functional properties [12]. Furthermore, adaptation of architectural
models at run-timemakes it possible to generate different software sys-
tems based on the same abstract definition, for example, to cope with
different user preferences, component status or target platforms [3].
Fig. 1 shows how our component-based architectures can be represent-
ed on three levels of abstraction (in the infrastructure proposed):

• Abstract architectural model, corresponding to the Platform Indepen-
dentModel (PIM) level inModel Driven Architecture (MDA) [31], and
representing the architecture in terms of the type of components it
contains and their relationships.

• Concrete architectural model, corresponding to the Platform Specific
Model (PSM) level, and describing the concrete components that
comply with the definition of the abstract architecture.

• Final software architecture, which represents the source code (our
components) to be executed or interpreted.

Run-time adaptation of the architectures is based on processes
executed on the abstract and concrete architecture levels [10,27]. On
the abstract level, model-to-model transformation processes [14] are
executed to adapt the abstract architectural models to changes in
context [9]. On the concrete level, the concrete architectural models
are realized by a trading process [28,8], which calculates the configura-
tions of concrete components that best meet the abstract definitions.
This provides the possibility of generating different software architec-
tures based on the same abstract definition, for example so it can be
executed on different platforms. The content of this paper focuses only
on showing the technological infrastructure used on the concrete level
and the final architecture. Adaptation on the abstract level (PIM
perspective), the trading process for the concrete architectures (PSM),
synchronization of abstract models and final architectures, or how the
changes in the models affect the executing architecture are outside
the scope of this paper.

The third pillar is Cloud Computing. The strengths of cloud com-
puting for users and organizations have been widely described in the
literature, e.g., [33] or [44]. The benefits identified include the use of
Software-as-a-Service (SaaS) and specifically Models-as-a-Service
(MaaS) as on-demand high-level abstract software. The combined use
ofMaaS andMDE in turn hasmanybenefits [6] to highlight such aspects
as their availability, run-time sharing, improved scalability and distribu-
tion, etc. In our proposal, instead of proposing general use of this con-
cept, our work focuses on the management of software architectures
based on our COTSget components. Therefore, inspired by the use of
these components in models as services and as a mechanism for access
to these models through web services deployed in the cloud, we have
created a cloud service called COTSgets-as-a-Service. To provide this ser-
vice, a cloud infrastructure organized in three layers has been created

(Fig. 1): the client layer (C), the platform-dependent server layer
(B) and the platform-independent server layer (A).

The client layer is made up of user applications, and therefore, it
comprises the set of components defining the final software architec-
ture. Currently, all the developed applications are deployed on the
web platform and have been implemented using widgets, following
the recommendation ofW3C. The platform-dependent layer is intended
to (1) provide the clientwith the required services and (2) interact with
the independent layer, thus obtaining some services from it and provid-
ing it with others. The platform-independent layer offers those services
which are valid for all platforms. These services are based only on the
description of components and their relationships, regardless of the
platform where components will be deployed.

This article is based on previous research work [43] in the field of
distributed development of information systems [34]. In that work,
the system infrastructure focusing on the three-level data model used
in thedifferent layers of our architecture is described. Theworkpresent-
ed in this manuscript focuses on the technological infrastructure based
on web services and cloud computing used for the deployment of
COTS component-based architectures.

The rest of the paper is organized as follows: Section 2 shows an
example of an scenario where the most important concepts used in
the rest of the article are explained. Section 3 describes the languages
proposed (using an MDE perspective) for describing COTSget-based
architectures. Section 4 explains how the COTSgets-as-a-Service is pro-
vided using a cloud service. Section 5 illustrates the process used to val-
idate and evaluate the cloud service and its performance. Section 6
presents the relatedwork and, finally, Section 7 summarizes the conclu-
sions and discusses the future work.

2. An example scenario

This section describes a web-based application as a sample scenario
to explainmany of the concepts used in the rest of the article. This appli-
cation (Fig. 2) was dynamically constructed fromCOTSgets components
for the abovementioned ENIA research project. The application deals
with a geographic information query system, with which visual layers
with this type of information can be loaded. These layers provide data
acquired from a set of Open Geospatial Consortium (OGC) services pro-
vided by the REDIAM (Environmental Information Network of Andalusia).

The components in this application are not assembled alone (inde-
pendently of each other), but rather coupled, as described below, to
help designers build complex interactive applications. In the upper
right-hand corner of the figure, there are two components: UserInfo
and Logout. The first one is responsible for identifying the user who
has connected and showing user-specific information, such as the
profile they are currently using in the system, and the Logout compo-
nent closes that user's session. These two components are not isolated
from each other. In fact, there is a component called Header, which in

P
la

tfo
rm

 
In

de
pe

nd
en

t 
S

er
ve

r 
La

ye
r

P
la

tfo
rm

 
D

ep
en

de
nt

 
S

er
ve

r 
La

ye
r

C
lie

nt
 

La
ye

r

C
lo

ud
 S

er
vi

ce

Concrete 
Architectural 

Model
Component 

Specifications

Final Software 
Architecture

Software 
Components

(C)

(B)

(A)

Concrete 
Architecture

Abstract 
Architectural 

Model

Fig. 1. Abstraction levels and layers of the proposed infrastructure.

2 J. Vallecillos et al. / Computer Standards & Interfaces xxx (2015) xxx–xxx

Please cite this article as: J. Vallecillos, et al., A cloud service for COTS component-based architectures, Comput. Stand. Interfaces (2015), http://
dx.doi.org/10.1016/j.csi.2015.11.008

http://dx.doi.org/10.1016/j.csi.2015.11.008
http://dx.doi.org/10.1016/j.csi.2015.11.008


Download English Version:

https://daneshyari.com/en/article/6883196

Download Persian Version:

https://daneshyari.com/article/6883196

Daneshyari.com

https://daneshyari.com/en/article/6883196
https://daneshyari.com/article/6883196
https://daneshyari.com

