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A B S T R A C T

A key challenge for supporting elastic behaviour in cloud systems is to achieve a good perfor-
mance in automated (de-)provisioning and scheduling of computing resources. One of the key
aspects that can be significant is the overheads associated with deploying, terminating and
maintaining resources. Therefore, due to their lower start up and termination overhead, con-
tainers are rapidly replacing Virtual Machines (VMs) in many cloud deployments, as the com-
putation instance of choice. In this paper, we analyse the performance of Kubernetes achieved
through a Petri net-based performance model. Kubernetes is a container management system for
a distributed cluster environment. Our model can be characterised using data from a Kubernetes
deployment, and can be exploited for supporting capacity planning and designing Kubernetes-
based elastic applications.

1. Introduction

Cloud systems enable computational resources to be acquired (and released) on-demand and in accordance with (changing)
application requirements. Users can rent computational resources of different types: virtual machines (VMs), containers, specialist
hardware (e.g. GPU or FPGA), or bare-metal resources, each having their own characteristics and cost. An effective automated control
of cloud resource (de-) provisioning needs to consider [1]: (i) resource utilization, (ii) economic cost of provisioning and manage-
ment, and (iii) the resource management actions that can be automated. Increasingly, many cloud providers support resource pro-
visioning (and billing) on a per second or even per millisecond basis, such as GCE,1 or Amazon Lambda2 – referred to as “serverless
computing”. Therefore, understanding performance associated with deploying, terminating and maintaining a container that hosts
that function is significant, as it affects the ability of a provider to offer finer grained charging options for users with stream analytics/
processing application requirements. Provisioning and de-provisioning actions are subject to a number of factors [1], mainly: (i) the
overheads associated with the action (e.g. launching a new VM can often take minutes [2]); and (ii) the actual processing time
required can vary due to resource contention – leading to uncertainty for the user.

Kubernetes [3] is a system that enables a container-based deployment within Platform-as-a-Service (PaaS) clouds, focusing
specifically on cluster-based systems. It can provide a cloud-native application (CNA) [4], a distributed and horizontally scalable
system composed of (micro)services, with operational capabilities such as resilience and elasticity support. From an architectural
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point of view, Kubernetes introduces the pod concept, a group of one or more containers (e.g. Docker, or any OCI compliant container
system) with shared storage and network. In this paper, we investigate deploying, terminating and maintaining performance of
(Docker) containers with Kubernetes, identifying operational states that arise with the associated pod–container. This is achieved
through Reference Nets (a kind of Petri-Net (PN) [5]) based models. The models can be further annotated and configured with
deterministic time, probability distributions, or functions obtained from monitoring data acquired from a Kubernetes deployment. It
can also be used by an application developer / designer: (i) to evaluate how pods and containers could impact their application
performance; or (ii) to support capacity planning for application scale-up / scale-down.

This paper extends [6] by: (i) the inclusion of additional experiments in a larger cluster; (ii) considering the impact of variable
latency/Round-Trip Time (RTT) in the communication network; (iii) analysing the impact of varying the number of containers inside
a pod; (iv) analysing the impact of downloading a container image at deployment time; (v) using rules to assist developers to better
structure their Kubernetes deployment. The paper is organized as follows. In Section 2, we describe our model. Section 3 shows our
pod abstraction overhead characterization. We discuss the deployment results in Section 4 and related work in Section 5. The
conclusions are outlined in Section 6.

2. Kubernetes overhead analysis & performance models

The Kubernetes architecture3 incorporates the concept of a pod, an abstraction that aggregates a set of containers with some
shared resources at the same host machine. It plays a key factor in the overall performance of Kubernetes. We make use of Reference
Nets3 to model pods and containers and to conduct performance analysis. Reference Nets can be interpreted by Renew 4 [7], a Java-
based Reference net interpreter and a graphical modelling tool.

2.1. Kubernetes performance model

Kubernetes supports two kinds of pods: (i) Service Pods: They are run permanently, and can be seen as a background workload in
the cluster. Two key performance metrics are associated with them: (i.a) availability (influenced by faults and the time to restart a
pod/container) and (i.b) utilisation of the service (impacting response time to clients). For example, high utilisation leads to an
increased response time. Several Kubernetes system services (e.g. container network or DNS) and high level services (e.g. monitoring,
logging tools) are provided by Service Pods. (ii) Job/batch Pods: They are containers that execute tasks and terminate on task
completion. For a Job pod, both deployment and total execution time (including restarting, if necessary) are important metrics. The
restart policy of these containers can be onFailure or never.

When a pod is launched in Kubernetes, it requests resources (RAM and CPU) to the Kubernetes scheduler. If enough resources are
available, the scheduler selects the best node for deployment. The requested CPU could be considered as a reservation in contingency
situations. For instance, when a container is idle (e.g. it is inside a service pod and the service has low utilisation), other containers
can use the CPU. With this resource model, the overall performance of the pod depends on its resource requests and on the overall
workload. We could define a CPU usage limit, but then some resources might remain unused.

We model a pod’s life cycle in order to estimate the impact of different scenarios on the deployment time and the performance of
the applications running inside a pod. In Kubernetes, a pod’s life cycle depends on the state of the containers that are inside it. For
instance, a pod has to wait until all its containers are created. With the Reference Nets abstraction, we can provide an unambiguous
hierarchical representation of the Kubernetes manager system as the System Net and the Pods (with the containers) as the Token Nets.
The tokens inside our Token Net represent containers and the tokens inside our System Net represent Pods, as illustrated in Figs. 1
and 2. The models were derived from the Kubernetes documentation 5; specifically, from the Pod Lifecycle section6 and from the
Resource Management section.7 Details about places and transitions, needed to specify the initial marking, are hidden to improve
legibility. In addition, we assume that the scheduler assigns a pod to a single node arbitrarily, as long as the machine has enough
resources available. If there are not enough resources in the cluster, the pod waits in Pending Scheduling place. This behaviour
could be refined by introducing more sophisticated policies and a rejection place for pods. Machines place 8 represents the resources
managed by the scheduler. For each machine, there is a tuple token with the identification of the node, the available RAM size and
number of available cores. Fig. 1 shows three machines ranging from 8GB to 32GB, with 1 to 4 cores. The resources assigned to a pod
are only released when the pod restart policy is “never” or “onFailure”. Once the pod has been assigned to a machine, Kubernetes
starts creating the containers – it is in Pending Scheduler place – while the pod waits in its Pending place. Both nets are syn-
chronized through the inscription runCont. In this way, when a container in a Pod changes to Running place in Fig. 2, the number of
pending containers in this pod is decremented in the Pending place of Fig. 1. When all containers are running in the pod, the

3 We present a brief description on Reference Nets and Kubernetes in two Appendices, which are available at http://cos2mos.unizar.es/COS2MOS/papers/
COMPELECENG_2017_1250_Appendix.pdf.
4 http://www.renew.de.
5 https://kubernetes.io/docs.
6 https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/.
7 https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/.
8 It should be noted that Machines place appears twice: One with a single circle (actual definition) and with a double circle (a duplication to simplify the model).

Reference nets support double circle to simplify the model and to improve its legibility. If it were not used, several arcs would cross the model with their corresponding
arc labels
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