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a b s t r a c t

A new recurrent wavelet fuzzy neural network (RWFNN) with adaptive learning rates is pro-

posed to control the rotor position on the axial direction of a thrust magnetic bearing (TMB)

mechanism in this study. First, the dynamic analysis of the TMB with differential driving mode

(DDM) is derived. Because the dynamic characteristics and system parameters of the TMB

mechanism are high nonlinear and time-varying, the RWFNN, which integrates wavelet trans-

forms with fuzzy rules, is proposed to achieve precise positioning control of the TMB. For the

designed RWFNN controller, the online learning algorithm is derived using back-propagation

method. Moreover, since the improper selection of learning rates for the RWFNN will dete-

riorate the control performance, an improved particle swarm optimization (IPSO) is adopted

to adapt the learning rates of the RWFNN on-line. Numerical simulations show the validity of

TMB system using the proposed RWFNN controller with IPSO under the occurrence of uncer-

tainties.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetic bearings (MBs) are a very promising technology and are now being employed for a variety of high performance

applications [1-4]. Based on the noncontact and frictionless characteristics, MB offers advantages such as longer lifetime, lower

frictional losses, higher rotational speed, and elimination of the lubrication [1, 3]. In most applications, the control objects should

be positioned and moved precisely and functionally to deal with the different operation demands or environments. Therefore,

precise positioning control is a very important issue for MBs. In [5], a nonlinear control system of a magnetic journal bearing

was designed using a combination of feedback linearization and backstepping concepts for tracking control. In this design, a

proportional-derivative (PD) feedback law, which was used for pseudo-input during the backstepping procedure, is unable to

deal with the time-varying disturbance. In [6], a decentralized proportional-integral-derivative neural network (PIDNN) control

scheme was proposed to regulate and stabilize a fully suspended five degree-of-freedom MB system. Based on the decentralized

concepts, the computational burden was reduced and the controller design was simplified. A three-pole MB using a decentralized

proportional integral derivative (PID) feedback law with linear quadratic Gaussian (LQG) optimization and an integral sliding

mode controller was presented in [7]. Furthermore, some other control designs such as linear quadratic Gaussian control [8],
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H∞ control [9], backstepping control [10], feedback linearization approach [11] were reported for the positioning and tracking

controls of MBs in recent years.

In the operation of MB systems, the purpose of bias current setting is to improve the linearity of the force-current relationships

around the operating point and allow for a higher slew rate of force [1]. Moreover, the operating modes of the drive system which

supply the currents to the electromagnets can be classified into three classes [4]. The most popular is Class-A driving mode, i.e.

DDM, in which both the bias currents of the opposite MBs are set at half of the maximum allowable current. Then, the control

current is added to the bias current in one electromagnetic coil and subtracted from the bias current in the opposite one. This

operating mode provides maximum range of the force dynamic and good linearity of the control dynamic. For Class-B driving

mode, both bias currents are set at lower values and control current is superimposed on only one side of the pair of coils. Though

the energy consumption can be improved efficiently, this operating mode is only suitable for low bearing stiffness and low

vibration applications due to poor slew rate and controllability of the force. If there is no bias current used, it is categorized as

Class-C driving mode. Though the rotor heating is the least, high nonlinearity of the electromagnetic force dynamic degrades the

control characteristic greatly.

By combining wavelet functions with neural networks (NNs), wavelet neural networks (WNNs) have been developed for a

wide range of fields and applications [12]. Since the WNN introduces the wavelet decomposition property into NN, it provides

quick converge and high precision with reduced network size for an alternative in nonlinear control problems. Moreover, a

wavelet fuzzy neural network (WFNN) combining wavelet theory with fuzzy neural network (FNN) was further proposed [13].

In WFNN, each fuzzy rule corresponds to a sub-WNN [13]. Thus, the sub-WNNs at different resolution levels are used to capture

different behaviors of the dynamic systems. Additionally, the role of the fuzzy rules of FNN is to determine the different contri-

bution of each sub-WNN to the output of the WFNN [13]. Compared with conventional WNNs, the approximation accuracy and

generalization capability of the WFNN can be improved greatly via wavelet and fuzzy sets parameters learning [13-15].

Particle swarm optimization (PSO), which is a population-based optimization method, has attracted increasing attention to

achieve high efficiency solver for global optimization problems in scientific and engineering domains [16, 17]. The PSO method is

based on the simulation of animal social behaviors with self-adaptive characteristic. Comparing with genetic algorithm (GA), PSO

has the ability to retain a memory of good solutions by all particles, whereas previous knowledge is not considered after each

evolution in GA. Meanwhile, since the unique information diffusion and interaction mechanism of PSO are comparably simple,

it requires low computational burden and is suitable in various applications such as control [18, 19], system identification [20],

diagnosis [21], and image process [22, 23]. These works have clearly shown that PSO is a fast and reliable tool to design the

optimal strategy, and also can outperform other evolutionary algorithms. On the other hand, many variants of PSO have been

proposed to further enhance the particle’s learning ability and make it powerful in reasoning over the past decade [24-26]. In

[24], the worst experience component is included in improved particle swarm optimization (IPSO) to give additional exploration

capability.

In this study, the TMB system is first represented by a nonlinear dynamic model. Moreover, since the exact parameters of

this model are unknown, the six layers RWFNN controller with IPSO is proposed to control the rotor position on the axial direc-

tion of the TMB system for tracking reference trajectory with robustness. Finally, simulation results illustrating the validity and

advantages of the proposed RWFNN for the TMB control system are discussed.

2. Dynamic analysis of TMB system

2.1. System structure of MB

A typically structure of the TMB using DDM drive system is shown in Fig. 1 where a thrust disk is embedded on the rotor

and used to carry out the rotor position control on the defined axial direction Z. Moreover, in the DDM drive system, both the

bias currents of the left and right MBs are set as the half of maximum allowable current. The control current is added to the

bias current in one electromagnetic coil and subtracted from the bias current in the opposite one. According to the dynamic

adjustment of the control current, the rotor can be suspended and its position z can be moved to the reference position zm.

As shown in Fig. 1, the deviation of the nominal air gap z0 is denoted by variable z which is also referred as the rotor position.

Moreover, a pre-designed bias voltage v0 is used for both the magnetic bearings to produce the same basic attractive forces for

both sides of the thrust disk. On the other hand, the control voltage vz is obtained by the proposed RWFNN controller. The total

current is a combination of bias current i0 and control current iz from the power amplifier, and circulates through coils on the

stator.

2.2. Dynamic model

Using the Newton’s law, the dynamic model of the TMB control system can be described as:

mz̈ + cż − fdz = Fz (1)

where m is the mass of the rotor; c is the friction constant; Fz is the electromagnetic force and defined as Fz ≡ fz1 − fz2 in which fz1

and fz2 are the electromagnetic forces produced by the right and left electromagnets, respectively; fdz is the external disturbance.
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