
c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 3 1 – 2 4 4

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

CDroid: practically implementation a

formal-analyzed CIFC model on Android

Zezhi Wu

a , b , Xingyuan Chen

a , b , ∗, Xuehui Du

b , Zhi Yang

b

a Institute of Zhengzhou Information Science and Technology, Zhengzhou, China
b State Key Laboratory of Cryptology, Beijing, China

a r t i c l e i n f o

Article history:

Received 28 August 2017

Revised 16 March 2018

Accepted 6 July 2018

Keywords:

Android

Information flow control

Security process algebra

Dynamic taint tracking

Noninterference

a b s t r a c t

Decentralized information flow control (DIFC) operating systems provide mechanisms for

applications to handle the secrecy and integrity of their data by themselves. DIFC adapts to

the distributed systems well, but not for the centralized authorization systems where an ad-

ministrator manages all the privileges. For example, Android is full of untrusted third-party

applications. A phone user may want to specify what kind of application can deal with what

kind of private data by enforcing information flow control. To address this, we proposed

a novel formal-described and security-proofed centralized information flow control (CIFC)

model. In CIFC, taint tag of private data and capability label of applications are designed

to support fine-grained and user-defined information flow control. Differs from DIFC and

classic information flow control models, CIFC model controls information flow according to

the relation between tag and label rather than the relation between two labels of applica-

tions. We use Value-passing Security Process Algebra (VSPA) to clarify the formal semantics

of CIFC model. The verification of system equivalence proves that the model guarantees

the noninterference security property in virtue of Checker of Persistent Security (CoPS) tool.

We also implemented CDroid, a prototype of the CIFC model which can track and control

information flow at runtime. CDroid is demonstrated to be an accurate system to achieve

the security goal through several function test experiments. Furthermore, CDroid has 5%

lead in memory consumption and 17% overhead of runtime performance compared to

Android.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Modern operating system (OS) provides access control and

permission mechanisms to help the users to handle their pri-
vate data. However, only the releases of private data are con-
trolled by these mechanisms, the transfers of private data are
not controlled in OS. Once any of the applications gets the
data, no more rules are made to guarantee the application

uses the private data legally.

∗ Corresponding author at: Institute of Zhengzhou Information Science and Technology, Zhengzhou, China.
E-mail addresses: 1141208772@qq.com (Z. Wu), chxy302@vip.sina.com (X. Chen), dxh37139@sina.com (X. Du), zynoah@163.com (Z. Yang).

Information flow control technique can monitor the pri-
vate data transfer within the OS and ensure that the private
data are securely handled by applications. Classic information

flow control was initially applied in military systems in order
to protect information confidentiality (such as BLP model) and

integrity (such as BIBA model). Myers and Liskov (1997) firstly
presented a Decentralized Label Model (DLM) to control
information flow during compiling in decentralized authority
systems. Other researches (such as Asbestos (Efstathopoulos
et al., 2005), HiStar (Zeldovich et al., 2011), Flume

https://doi.org/10.1016/j.cose.2018.07.005
0167-4048/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cose.2018.07.005
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.07.005&domain=pdf
mailto:1141208772@qq.com
mailto:chxy302@vip.sina.com
mailto:dxh37139@sina.com
mailto:zynoah@163.com
https://doi.org/10.1016/j.cose.2018.07.005

232 c o m p u t e r s & s e c u r i t y 7 8 (2 0 1 8) 2 3 1 – 2 4 4

(Krohn et al., 2007), Dstar (Zeldovich et al., 2008), Laminar (Roy
et al., 2009), Aeolus (Cheng et al., 2012)) have implemented

varieties kind of DIFC OSs. However, these systems have not
been widely used. The reasons are listed as follows:

1. Some of the information flow control models (IFCMs)(such

as Asbestos, HiStar, Flume, Dstar) are too complex for the
users and programmers to understand. The other IFCMs
(such as BLP, BIBA, DLM) are easier to learn, but their infor-
mation flow control rules are too rigid in majority of the
cases.

2. DIFC systems provide diversity models with application-
defined security policies for individual applications. The
private data are protected in the method of allocating and

declassifying labels. However, very little contributions are
made to an system administrator on system-wide security
policies.

3. Source codes need to be rewrite by the programmers in or-
der to work with the new programming model. This makes
the DIFC systems are not compatible with off-the-shelf ap-
plications. Meanwhile, the majority of the systems provide
coarse-grained information flow control, only few of the
systems provide fine-grained information flow control but
with heavier runtime overhead.

To address these, we present a novel formal-described and

security-proofed centralized information flow control (CIFC)
model. CIFC is a centralized authority model which provides
security guarantee to a monolithic user who fully controls
the system. The flow of their private data is controlled by
themselves which is much safer than controlled by the pro-
gram or application in OS. In CIFC, taint tag of private data
and capability label of application are designed to support
fine-grained and user-defined information flow control. Dif-
fers from traditional DIFC and classic IFC models, the infor-
mation flow controlled by CIFC model are based on the re-
lation between taint tag and capability label rather than the
relation between the two label s of applications. For example,
there are two applications, one is labeled as “secret” and the
other is labeled as “public”. The information flow from appli-
cations “secret” to application “public” is not allowed in DIFC

and classic IFC models in order to protect data confidential-
ity. But in our model, the information flow from application

“secret” to application “public” is not allowed only when the
transferred data contain “secret” information. This makes our
model is more flexible and available compares to the previ-
ous models. What’s more, label s of capability are classified into
send and receive in our model instead of secrecy and integrity in

the DIFC models which offers a better description on infor-
mation flow characteristics. our model also offers a better im-
plementation on the separation of duties and the principle of
least privilege via the label constraints. The formal semantics
of CIFC model is clarified by using the Value-passing Security
Process Algebra. The verification of system equivalence proves
that our model guarantees noninterference security property
of Strong Bisimulation-based Non Deducibility on Composi-
tions in virtue of CoPS (Focardi and Gorrieri, 2000; Piazza et al.,
2004) tool. We also implemented CDroid, a prototype of CIFC

model. With the aid of TaintDroid (Enck et al., 2014), CDroid

tracks and controls information flow dynamically at the gran-

ularity of individual variables. Meanwhile, any third-party ap-
plication can successfully run in CDroid without any modifi-
cation. CDroid also can be packaged as an upgrade package in

zip format and installed from SD card. What’s more, several
applications are provided to make the usage of CDroid more
easier. Application CPolicy is designed for the user to define
CIFC policy. Application CNotify is designed to notify the user
when a violation of CIFC policy occurs. Application FAdmin is
designed for the user to set or declassify the taint tag for a file.

CDroid is demonstrated to be a practical and accurate
system that can achieve the security goals which are pre-
sented in section 2 easily. To the best of our knowledge, these
goals are not supported by existing systems or researches.
We also evaluated our prototype on memory consumption

and runtime performance. CDroid has 5% lead in memory us-
age and 17% runtime overhead compared to Android. The re-
sults of function and performance tests prove that CDroid is
a fine-grained, accurate, flexible and available system which

tracks and controls information flow at runtime. What’s more,
Source codes of CDroid can be download at https://pan.baidu.
com/s/1pLAYlXx . We also provide system images for emulator
of CDroid at https://pan.baidu.com/s/1nvTZfRV .

The contribution of this paper can be summarized as: 1.
A novel CIFC model is presented for centralized authoriza-
tion operating systems to enforce user-defined and system-
wide information flow control. This CIFC model is simpler
than previous DIFC models. 2. The SBNDC (Focardi and Gor-
rieri, 2000) noninterference security property of CIFC model
is formal-analyzed and automatic-proofed. 3. The very initial
design and implementation of VM-level and OS-level CIFC for
smartphone operating systems.

2. Motivating example

One of the prominent features of Android OS is allowing
users to download third-party applications. These applica-
tions might be developed by untrusted parties, which may
lead to some uncertainties on abuse of user’s privacy. Fig. 1
shows an ordinary example of user’s privacy requirements in

Android OS. In order to ensure the functional availability, ap-
plication WPS is allowed to read sensitive file and send data
out via the network interface. Nevertheless, in order to ensure
the privacy and security, WPS is not allowed to send the sen-
sitive file (even a word or a sentence in the file) out via the
network interface or receive contacts information from appli-
cation Message. Similarly, Message is allowed to read sensitive
file or contacts data and send messages information out via
the message interface, but Message is not allowed to send the
sensitive file or contacts information out via the message in-
terface. However, These common and practical demands are
not supported by Android or any existing researches.

Allowing an application to read sensitive file or send data
out via the network interface can be achieved by access con-
trol and permission mechanisms, but these mechanisms can-
not fully support the further demand well: if the user gives
WPS reading and sending permissions, then he has no idea to
prevent WPS from sending sensitive file out via the network
interface. If the user only gives WPS reading permission and

do not gives the sending permission, this can prevent WPS

https://pan.baidu.com/s/1pLAYlXx
https://pan.baidu.com/s/1nvTZfRV

Download	English	Version:

https://daneshyari.com/en/article/6883821

Download	Persian	Version:

https://daneshyari.com/article/6883821

Daneshyari.com

https://daneshyari.com/en/article/6883821
https://daneshyari.com/article/6883821
https://daneshyari.com/

