
c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Automated analysis of freeware installers

promoted by download portals

Alberto Geniola

a , Markku Antikainen

b , ∗, Tuomas Aura

a

a Aalto University, Finland
b Helsinki Institute for Information Technology, University of Helsinki, Finland

a r t i c l e i n f o

Article history:

Received 24 October 2017

Accepted 26 March 2018

Available online 31 March 2018

Keywords:

Potentially-unwanted program

Pay-per-install

UI-automation

Man-in-the-middle Malware

a b s t r a c t

We present an analysis system for studying Windows application installers. The analysis

system is fully automated from installer download to execution and data collection. The

system emulates the behavior of a lazy user who wants to finish the installation dialogs

with the default options and with as few clicks as possible. The UI automation makes use

of image recognition techniques and heuristics. During the installation, the system collects

data about the system modification and network access. The analysis system is scalable

and can run on bare-metal hosts as well as in a data center. We use the system to analyze

792 freeware application installers obtained from popular download portals. In particular,

we measure how many of them drop potentially unwanted programs (PUP) such as browser

plugins or make other unwanted system modifications. We discover that most installers

that download executable files over the network are vulnerable to man-in-the-middle at-

tacks. We also find, that while popular download portals are not used for blatant malware

distribution, nearly 10% of the analyzed installers come with a third-party browser or a

browser extension.

© 2018 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Most computer users download and install some freeware
applications from the Internet. The source is often one
of the many download portals, which aggregate software
packages and also offer locations for hosting them. It is
common concern that the downloaded software might be
infected with malware or have other unwanted side ef-
fects. Freeware installers are also known for dropping of
potentially unwanted programs (PUP) to the user’s com-
puter. PUP and other unwanted system modifications to
desktop computers can also be considered a security threat

∗ Corresponding author.
E-mail addresses: alberto.geniola@studenti.polito.it (A. Geniola), markku.antikainen@helsinki.fi (M. Antikainen), tuomas.aura@aalto.fi

(T. Aura).

(Emm et al., 2016; Wood et al., 2016). This phenomenon is
partly caused by the pay-per install (PPI) business model where
freeware software developers can monetize their software
effectively by bundling it with other third-party applications
or by promoting some software and services by changing the
user’s default settings. This business model is not always
illegal as the application installer may inform the user about
the third-party software and even allow her to opt-out from

installing third-party applications. However, this is often done
in a way that the user is not completely aware of the choices
he makes.

In this paper, we set out to analyze how prevalent are the
security and PUP problems among the software obtained from

https://doi.org/10.1016/j.cose.2018.03.010
0167-4048/© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cose.2018.03.010
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.03.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alberto.geniola@studenti.polito.it
mailto:markku.antikainen@helsinki.fi
mailto:tuomas.aura@aalto.fi
https://doi.org/10.1016/j.cose.2018.03.010
http://creativecommons.org/licenses/by-nc-nd/4.0/

210 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 2 0 9 – 2 2 5

download portals. For this, we create an automated analy-
sis system that downloads and installs the applications in

a sandbox while monitoring the target system. The sandbox
emulates the behavior of a lazy user who tries to complete
the installation process with the default settings of the in-
staller. It does this with the help of image recognition on

screenshots and heuristic rules. During the whole process,
we record network traffic and modifications to the target sys-
tem. We demonstrate the capabilities of the system by analyz-
ing nearly 800 popular software installers from eight different
download portals.

As hinted, we have two distinct goals. First, we create a
scalable and fully automated tool for analyzing a large num-
ber of application installers. Unlike other existing application

analysis sandboxes (e.g. Cuckoo Sandbox by Guarnieri et al.,
2012), our tool is not only a plain sandbox but can also in-
teract with application installers. Our second goal is to use
the system to analyze large quantities of software from dif-
ferent download portals in order to better understand the
prevalence of any security problems in them. Unlike earlier
research on PPI and PUP, such as those presented by Caballero
et al. (2011) and Thomas et al. (2016) , we do not try to differ-
entiate between legitimate and malicious actions but try to
cover all potentially unwanted changes to the system. This
not only gives insight to the prevalence of any problems but
also teaches up about the software installers and download

portals in general.
More specifically, our contributions are the following:

• We create a scalable, fully automated, sandboxed analysis
system for software installers. The system uses UI automa-
tion to emulate user interaction and monitors the instal-
lation process. The system supports virtualized as well as
bare-metal sandboxes. The system has been published as
open source.1

• To show the capabilities of the system, we use it to analyze
792 popular freeware installers crawled from eight popu-
lar download portals. The analysis covers file system ac-
cess, registry modifications, and network traffic. We look
for indications of unwanted software drops, other poten-
tially unwanted changes to the system, and vulnerabili-
ties in the network communication of the installers. Our
main findings include that while the download portals do
not distribute malware, 1.3 % of the installers led to the
installation of a well-known potentially unwanted appli-
cation (PUP) and nearly 10 % of the installers came with a
third-party browser (e.g. Chrome) or a browser extension.
Furthermore, we found that the installers often download

the application binaries over HTTP and that over half of
these are do not verify the integrity of the binary and

are thus vulnerable to man-in-the-middle (MitM) attacks.
While some of the analysis results have been published

earlier (Geniola et al., 2017), the results and discussion pre-
sented in this paper are more comprehensive than what
has been published earlier.

1 The analysis system is available at https://github.com/
albertogeniola/TheThing/tree/master .

The rest of this paper is organized as follows. Section 2 re-
views related work. Section 3 describes the overall architec-
ture of the analysis system. Section 4 explains how we were
able to automatically interact with the UI’s of the installers.
Section 5 moves towards using the analysis system and de-
scribes how the system was used to analyze a large num-
ber of freeware installers. Analysis results are presented in

Section 6 and further discussed in Section 7 . Section 8 con-
cludes the paper.

2. Background

This section describes the related work and ideas on which

our research is based.

2.1. Potentially unwanted programs

Downloading applications from the Internet can be danger-
ous, and this also applies to download portals (Heddings, 2014;
2015). The applications might come with unwanted features
that range from clearly malicious, such as bundled malware
and spyware, to minor nuisances like changing the browser’s
default search engine. Such software is often referred to as
potentially unwanted programs (PUP) 2 . We use the broad defini-
tion of Goretsky (2011) , which states that a PUP is an appli-
cation or a part of an application that installs additional un-
wanted software, changes the behavior of the device, or per-
form other kinds of activities that the user has not approved

or does not expect. PUP often functions in a legal and moral
gray area. The threat of legal action from PUP authors has been

suggested as the reason why antimalware labels it as “poten-
tially unwanted” rather than “malicious” (Boldt and Carlsson,
2006; McFedries, 2005).

Recently, Kotzias et al. (2016) have shown that freeware in-
stallers only rarely come bundled with critical malware. More
often, the system modifications are just unnecessary and un-
expected. The user may even be informed about them, for ex-
ample, in the end-user licence agreement (EULA), and the in-
staller may allow a careful user to opt out of unwanted fea-
tures. However, as pointed out by Böhme and Köpsell (2010) ;
Motiee et al. (2010) , users do not always read EULAs and may
be habituated to accept default settings and ok any warnings.
This rushing-user behavior leads the user to giving uninformed
consent to the system modifications. Moreover, PUP installers
often come with a complex EULAs (Good et al., 2005), which

users are more likely to accept blindly (Bruce, 2005). Solutions
to this problem have been proposed (Boldt and Carlsson, 2006).
For example, Boldt et al. (2008) showed that it is possible to
detect some classes of spyware can be detected by analyzing
the EULAs. However, none of the proposals has been widely
adopted.

On mobile platforms, the problem of uninformed consent
has been solved so that the operating system informs the
user about the permissions given to each application. This
may happen either at the install time (e.g. Android 5 and ear-
lier), or when the application requests access to restricted

2 Potentially Unwanted Application (PUA) is another often used

term.

https://github.com/albertogeniola/TheThing/tree/master

Download English Version:

https://daneshyari.com/en/article/6883852

Download Persian Version:

https://daneshyari.com/article/6883852

Daneshyari.com

https://daneshyari.com/en/article/6883852
https://daneshyari.com/article/6883852
https://daneshyari.com

