
c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 4 7 2 – 4 8 7

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Dypermin: Dynamic permission mining

framework for android platform

Christos Lyvas

a , ∗, Costas Lambrinoudakis

a , Dimitris Geneiatakis

b

a Department of Digital Systems, University of Piraeus, Greece
b European Commission, Joint Research Centre (JRC), Cyber and Digital Citizens Security Unit, Via Enrico Fermi,
Ispra 2749, 21027, Italy

a r t i c l e i n f o

Article history:

Received 7 May 2017

Revised 22 April 2018

Accepted 3 May 2018

Keywords:

Android security

Android permissions map

Reflection technique

Android privacy

Dynamic analysis

a b s t r a c t

The Android architecture introduces to the application layer a permission based access

control model for restricting access to sensitive phone resources. In this model the access

to Application Programming Interfaces (APIs) is protected through permissions defined by

the Android OS. The developers in order to utilize protected API methods must declare, in

the application’s manifest, the appropriate permissions. The “relation” between framework

method and a permission can be found through Android’s documentation. However, not

only documentation may accidentally lack information but also Android features undocu-

mented and hidden API methods. Undoubtedly a major challenge for researchers today, is

the accurate identification of API methods and permissions pairs , which compose the permission

map for the Android framework.

This paper introduces Dypermin; a transparent framework for compiling the Android per-

mission map without requiring any modification to the underlying operating system. To

achieve that, Dypermin capitalizes on intrinsic properties of the Android framework that

is security exceptions during runtime and the availability of any protected API method

through the Android framework, as well as on the advantages of Java reflection mecha-

nism. Dypermin, in contrast to other related methods, validates itself as it relies on runtime

information, meaning that it does not generate false positive map entries. Dypermin has

been evaluated on different Android versions. The results have been compared with the re-

spective results of other proposed methods in order to demonstrate Dypermin’s efficacy for

compiling the Android permission map for any given version.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Android undoubtedly is considered the dominant operating
system (OS) in the smartphone market IDC: Smartphone OS
Market Share . Its open source nature constitutes it not only
the most preferable OS for mobile device vendors but recently

∗ Corresponding author.
E-mail addresses: clyvas@unipi.gr (C. Lyvas), clam@unipi.gr (C. Lambrinoudakis), dimitrios.geneiatakis@jrc.ec.europa.eu (D.

Geneiatakis).

it has been also adopted for general purpose Internet of Things
(IoT) devices like smart TVs, Android wearables, etc.

One pillar of Android’s security is the process isolation at
the kernel level, so that malevolent applications and services
do not to affect the reliability of other services/applications
or even of the device itself. Furthermore, it introduces an ac-
cess control model, at application layer, for restricting access
to “sensitive” resources (camera, location data, network, to

https://doi.org/10.1016/j.cose.2018.05.007
0167-4048/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cose.2018.05.007
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.05.007&domain=pdf
mailto:clyvas@unipi.gr
mailto:clam@unipi.gr
mailto:dimitrios.geneiatakis@jrc.ec.europa.eu
https://doi.org/10.1016/j.cose.2018.05.007

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 4 7 2 – 4 8 7 473

mention a few) that could affect user’s privacy or cause a se-
curity incident. Specifically, access to any sensitive resource is
granted through a protected Application Programming Inter-
face (API) method. An application in order to use a protected

API method it must first declare the corresponding permis-
sions in its manifest, and request it also at runtime if it is
executed on Android latest versions, otherwise a security ex-
ception is raised. In any case, users should give their consent
for the permissions requested by the application either during
the first time that a protected API method is invoked or dur-
ing installation process, depending on the Android version. A

more detailed analysis of the Android security model and the
evolution of its permissions subsystem can be found in Enck
et al. (2009) ; Zhauniarovich and Gadyatskaya (2016) .

Programmers get information on the correlation between

permissions and protected API methods through Android’s
documentation. To this direction, an issue that attracts the
attention of researchers, developers and Android enthusiasts
is the question “What is the exact correlation between Android
Software Development Kit (SDK) API methods and permissions?”.
This is caused by the fact that (a) documentation may acci-
dentally lack information, and (b) Android has hidden and in-
ternal API methods that are not directly accessible at the ap-
plication layer since they are not included in the Development
SDK. Though the latter cannot be directly accessed there are
several publicly available sources that give guidelines on how

to gain access to such resources (Android Hidden API , Li et al.
(2016a)). So eventually, programmers can gain access to these
hidden API methods.

At this point it should be stressed that an accurate cor-
relation between permissions and API methods is of high

importance, as this correlation is utilized for malware detec-
tion Arp et al. (2014) and other misconfigurations (i.e. over-
privileges Geneiatakis et al. (2015)) identification. Today there
are attempts, such as Stoaway Felt et al. (2011) , PScout Au et al.
(2012) , Axplorer Backes et al. (2016) and Bartel et al. (2014) ,
to compile the correlation of API methods–permissions that
extend Android’s documentation. However, these approaches
are bounded to specific Android versions and also require ac-
cess to the underlying OS source code.

Moreover, as the Android OS evolves and in order to im-
prove end-users’ experiences, it proceeds with various modifi-
cations to the underlying subsystems. For instance, as already
mentioned, permissions are enabled dynamically on the lat-
est versions of Android, while from version 6.0 backwards they
were granted statically. In addition, some API methods are
deprecated, while other are introduced to support additional
functionalities. So it is evident that these types of changes
not only affect the API methods and permission mapping but
also introduce inconsistencies in it among different Android

versions according to Zhauniarovich and Gadyatskaya (2016) .
Thus even other solutions, such as DPSpec Bogdanas (2017) ,
that exclusively rely on annotations (e.g., of documentation)
cannot provide a complete coverage for the Android permis-
sion mapping.

In this work, we elaborate on the developments of An-
droid’s API methods–permissions mapping by proposing a
framework, called Dypermin, capable of generating the per-
mission map in a transparent way without requiring access
to the OS source code and without generating false positive

alarms. Dypermin automatically invokes Android’s publicly
accessible and hidden API methods in order to intentionally
raise runtime security exceptions and thus decide whether or
not a permission dependency exists.

More specifically, Dypermin relies on the simple observa-
tion that the Android OS raises a security exception if a pro-
tected API method is invoked without the appropriate permis-
sions being defined in the application’s manifest. Dypermin, in

order to identify and report the permissions for every available
API method, builds a single application that is automatically
invoked after installation.

Dypermin achieves to extract all available API methods
since it is provided through the SDK and thus it does not re-
quire any modifications to the underlying OS. Furthermore, it
validates its finding as it relies on runtime information. Dyper-
min is evaluated with some well-known classes for different
Android versions and its results are compared with both An-
droid public and SDK source documentation as well as with

the results of other related proposed methods. Currently, we
do not provide a full mapping since it takes a substantial
amount of time (see Section 5). It has been proved that Dyper-
min can accurately identify the API methods–permission map

and deduce whether the available documentation is missing
a relation between an API method and a permission.

Summarizing, the contributions of this work are:

• The Dypermin framework is capable to compile the An-
droid API methods–permission map without requiring
modification of the underlying OS and without generat-
ing any false positive pairs of protected API methods–
permissions.

• Provides a comparative analysis among Dypermin, other
proposed related methods and the Android documenta-
tion.

• Dypermin’s proof of concept implementation

1 and the re-
sults 2 of our analysis are made publicly available.

To the best of our knowledge this is the first work that iden-
tifies, in a completely transparent and highly accurate way, the
relationship between a given API method and the related per-
missions without requiring access to the Android OS source
code; indeed it requires access to Android SDK, which how-
ever, can be retrieved from any Android OS device. We argue
that Dypermin is an orthogonal solution to existing ones func-
tioning complementary in order to achieve the highest possi-
ble coverage.

The rest of this paper is structured as follows.
Section 2 presents background information for the An-
droid OS, while Section Section 3 provides an overview of
the related work. Section 4 presents the Dypermin design

while its effectiveness is evaluated in Section 5 . Dypermin

discussion is further elaborated in Section 6 by introducing
a comparative analysis with other related works. Finally,
Section 7 provides the conclusions and provides pointers for
Dypermin’s future improvements.

1 https://github.com/xphctos/dypermin .
2 https://github.com/xphctos/dypermin-results .

https://github.com/xphctos/dypermin
https://github.com/xphctos/dypermin-results

Download English Version:

https://daneshyari.com/en/article/6883885

Download Persian Version:

https://daneshyari.com/article/6883885

Daneshyari.com

https://daneshyari.com/en/article/6883885
https://daneshyari.com/article/6883885
https://daneshyari.com

