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A B S T R A C T

General-Purpose computing on a Graphics Processing Unit (GPGPU) involves leveraging com-

modity GPUs as massively parallel processing units. GPGPU is an emerging computing

paradigm for high-performance and data-intensive computations such as cryptographic op-

erations. Although GPGPU is an attractive solution for accelerating modern cryptographic

operations, the security challenges that stem from utilizing commodity GPUs remain an un-

resolved problem. In this paper, we present an On-demand Bootstrapping Mechanism for

Isolated cryptographic operations (OBMI). OBMI transforms commodity GPUs into a se-

curely isolated processing core for various cryptographic operations while maintaining cost-

effective computations. By leveraging SystemManagement Mode (SMM), a privileged execution

mode provided by x86 architectures, OBMI implements a program and a secret key into the

GPU such that they are securely isolated during the acceleration of cryptographic opera-

tions, even in the presence of compromised kernels. Our approach does not require an

additional hardware-abstraction layer such as a hypervisor or micro-kernel, and it does not

entail modifying the GPU driver. An evaluation of the proposed OBMI demonstrated that

even adversaries with kernel privileges cannot gain access to the secret key, and it also showed

that the proposed mechanism incurs negligible performance degradation for both the CPU

and GPU.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Cryptography has become an essential component in modern
computer systems. As the amount of data requiring protec-
tion has increased due to the growing importance of security
and privacy, the heavy computational workload of crypto-
graphic operations has also become a challenging problem.To

alleviate the performance bottleneck affecting modern cryp-
tography, several previous works have suggested harnessing
many-core accelerators such as Graphics Processing Units
(GPUs), which can be used as massively parallel architec-
tures. Recent GPUs offer significant improvements in throughput
and performance-per-watt compared to commodity CPUs (Abe
et al., 2012). Leveraging such benefits, several researchers have
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shown that versatile modern cryptographic operations can be
accelerated efficiently using commodity GPU devices (Harrison
andWaldron, 2009; Lee et al., 2015; Manavski, 2007; Wang et al.,
2014; Zheng et al., 2014). Furthermore, research shows that GPU-
accelerated cryptography can be a cost-effective solution to real-
world cryptographic implementations such as the Secure
Sockets Layer (SSL) and Transport Layer Security (TLS) (Jang
et al., 2011).

Unfortunately, GPUs have several security problems.A recent
study shows that GPU data stored in GPU memory can be re-
trieved from different processes, because the GPU does not flush
its memory after its termination (Lee et al., 2014; Pietro et al.,
2016). Even when implementing an appropriate flushingmecha-
nism for the GPU, malicious users with kernel privileges can
easily access the GPU device memory through MMIO (Maurice
et al., 2014). Various memory-disclosure attacks (Heartbleed;
Blass and Robertson, 2012) and kernel-compromising attacks
show that the kernel-enforced security mechanisms can be by-
passed. If an attacker can manipulate the kernel or the driver,
the secret key can be stolen whenever it is exposed in the GPU
device memory.

To protect the secret key under a broad range of GPU vul-
nerabilities and threats to the underlying host system, we
propose a low-cost key-protection mechanism for general-
purpose computing on a GPU (GPGPU). We leverage System
Management Mode (SMM) and an SMM-based handler func-
tion to implement secure key management, along with a
bootstrapping mechanism that enables the key-protected ex-
ecution of GPU-accelerated cryptography. SMM is a privileged
execution mode for x86 architectures offered by commodity
CPUs. In SMM,only theauthorizedhandler – the so-calledSystem
Management Interrupt (SMI) handler – can be executed. Other
processes, including malicious processes, cannot be executed
in SMM. Because the OS kernel and any malicious processes
are unaware of the SMM execution, we can implement an SMI
handler that transparently manages the GPU device.

By implementing a simple bootstrapping mechanismwithin
the SMI handler, we securely upload the secret key into the
GPU cache. Unlike the GPU device memory, even privileged CPU
processes cannot access the GPU cache.There aremultiple types
of GPU caches, and the GPU constant cache can be easily uti-
lized as a key storage by exclusive use of the GPU constant
memory for the secret key. When the SMI handler clears the
remaining footprint of the secret key in the device memory,
the secret key is isolated within the GPU constant cache. Simi-
larly, we can also isolate the entire GPU code at the GPU
instruction cache to prevent any control-flow modifications of
the GPU program.

The main challenge to implementing the bootstrapping
mechanism arises because, although the SMI handler can se-
curely access the GPU device, it is unable to utilize the existing
GPU driver and OS kernel. This is because the OS kernel and
GPU driver are suspended in SMM. Modern GPUs are complex,
and the GPU driver is responsible for controlling the underly-
ing hardware.Without the help of the GPU driver, engineering
efforts to implement the bootstrapping process increase dra-
matically. To overcome this challenge, we split all the GPU
control logics needed for bootstrapping mechanism into two
classes of tasks: security-sensitive tasks, and security-insensitive
tasks. Consequently, security-insensitive tasks can be handled

by the existing GPU driver and rudimentary OS functionality.
We devised two consecutive steps for the bootstrapping process:
one step in normal CPU mode (i.e., protected mode), and the
other in SMM. By delegating most of GPU control logic (i.e.,
security-insensitive tasks) to the first step, we can signifi-
cantly reduce the complexity of the control logic required for
the SMI handler.

With our bootstrapping mechanism, the secret keys used
by GPU-accelerated cryptography are not exposed to attack-
ers. Before bootstrapping, the secret keys are stored in the
protected memory space, which is only accessible by the SMI
handler. In SMM, the secret key and GPU program are safely
uploaded to the GPU caches. Although processor environ-
ments isolated in SMM are only momentarily utilized until the
upload is complete, we can preserve the confidentiality of the
uploaded key and program during the acceleration of crypto-
graphic operations, since GPU caches are inaccessible from any
host processes. If the uploaded GPU program terminates, all
content in the GPU caches is invalidated. Thus, any subse-
quent GPU program cannot retrieve the secret keys.

To minimize the performance degradation incurred by the
proposed mechanism, we devise several optimizations for ef-
ficient bootstrapping. Furthermore, to demonstrate the feasibility
of our bootstrapping mechanism, we implemented a proto-
type using a commodity CPU and GPU. Our prototype includes
GPU-accelerated RSA and AES cryptographic operations, and
results in minimal performance loss. We carefully evaluated
the proposed mechanism in terms of its security, in order to
confirm that it is robust even to attackers with kernel privileges.

Our bootstrapping mechanism is advantageous in many
ways: (i) transparency – we leverage existing GPU drivers and
operating systems,without the need tomodify them; (ii) a small
TCB – our mechanism adds only a few hundred lines of code
for the SMI handler, significantly minimizing the size of the
TCB; (iii) compatibility – our mechanism is based on commod-
ity hardware; and (iv) simplicity and speed – the additional code
required for bootstrapping is relatively simple compared to other
approaches (Sani et al., 2014; Yu et al., 2015).

In particular, our work makes the following contributions:

1. To our best knowledge, we are the first to suggest using the
GPU cache to store cryptographic keys, such that the com-
modity GPU can safely accelerate cryptographic operations
without revealing sensitive information.

2. We suggest an SMM-based bootstrapping mechanism, re-
ferred to hereafter as the On-demand Bootstrapping
Mechanism for Isolated cryptographic operations (OBMI).
OBMI securely uploads the secret key into the GPU cache
in an on-demand fashion.

3. OBMI includes mechanisms for checking the integrity of the
accelerated GPU code.We propose a code-verificationmecha-
nism to guarantee that only reliable code can utilize the GPU
device for cryptographic key-related operations.

4. We implemented a prototype using a commodity Nvidia GPU.
Our evaluation shows that OBMI incurs minimal perfor-
mance overhead and is scalable to multiple secret keys.

5. By exploring several possible attacks, we show the robust-
ness of OBMI. We demonstrate that our approach enables
secure operations on commodity GPUs without increasing
the TCB of the system or degrading its overall performance.
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