
Systematic bug finding and fault localization enhanced
with input data tracking

Jared D. DeMott*, Richard J. Enbody 1, William F. Punch 1

Department of Computer Science and Engineering, 3115 Engineering, Michigan State University, Lansing, MI 48824-1226, USA

a r t i c l e i n f o

Article history:

Received 21 February 2012

Received in revised form

18 July 2012

Accepted 17 September 2012

Keywords:

Testing and debugging

Software security

Fault localization

Distributed fuzzing

Information flow controls

a b s t r a c t

Fault localization (FL) is the process of debugging erroneous code and directing analysts to

the root cause of the bug. With this in mind, we have developed a distributed, end-to-end

fuzzing and analysis system that starts with a binary, identifies bugs, and subsequently

localizes the bug’s root cause. Our system does not require the test subject’s source code,

nor do we require a test suite. Our work focuses on an important class of bugs, memory

corruption errors, which usually have software security implications. Thus, our approach

appeals to software attack researchers as well. In addition to our bug hunting and analysis

framework, we have enhanced code-coverage based fault localization by incorporating

input data tainting and tracking using a light-weight binary instrumentation technique. By

capturing code coverage and select input data usage, our new FL algorithm is able to better

localize faults, and therefore better assist analysts. We report the application of our

approach on large, real-world applications (Firefox and VLC), as well as the classic Siemens

benchmark and other test programs.

ª 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A study conducted by NIST in 2002 reports that software bugs2

cost the U.S. economy $59.5 billion annually (Tassey). More

than a third of this cost could be avoided if better software

testing was available. Debugging is part of this overall cost.

Debugging is traditionally a labor-intensive activity where

testers or developers seek to identify the erroneous code for

which a given input is generating an error. Consequently,

researchers seek techniques that automatically help locate

the root of bugs.

Similar costs occur in the area of software exploitation. The

tools and techniques to find and understand compiled-code

mistakes are similar to testing and repair, except that once

memory corruption bugs are understood they are weaponized

into working software exploits. Countries such as China,

Russian, and the U.S. are actively seeking to create cyber

weapons (Clarke and Knake, 2010; Goel, 2011). The Stuxnet

worm is a prime example of a cyber-weapon that leveraged

memory corruption bugs in the Microsoft Windows operating

system (Greengard, 2010). Therefore, cyber attackers also seek

a system that can automatically find and analyze security-

relevant bugs.

Given test cases (Voas and Miller, 1992), dynamic code

coverage3 information can be used to aid automatic, root-

cause discovery of coding mistakes. This process is known

* Corresponding author. Tel.: þ1 517 353 3541; fax: þ1 517 432 1061.
E-mail addresses: jdemott@msu.edu, jdemott@vdalabs.com (J.D. DeMott), enbody@cse.msu.edu (R.J. Enbody), punch@cse.msu.edu

(W.F. Punch).
1 Tel.: þ1 517 353 3541; fax: þ1 517 432 1061.
2 A software mistake or defect may be referred to throughout this document as an error, bug, or fault.
3 Code coverage (CC) is a measure commonly used in software testing. It describes the degree to which the source code of a program

has been tested. In this case, CC refers to the specific blocks that were executed for a given test.

Available online at www.sciencedirect.com

journal homepage: www.elsevier .com/locate/cose

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 3 0e1 5 7

0167-4048/$ e see front matter ª 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cose.2012.09.015

mailto:jdemott@msu.edu
mailto:jdemott@vdalabs.com
mailto:enbody@cse.msu.edu
mailto:punch@cse.msu.edu
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2012.09.015
http://dx.doi.org/10.1016/j.cose.2012.09.015
http://dx.doi.org/10.1016/j.cose.2012.09.015

as fault localization (FL), and it is an active research area. Fault

localization tools typically require (1) a test suite and (2) the

software source code. A test suite will have both input and

the ability to recognize output. The output of each test case is

labeled, indicating whether that particular result is a “pass”

or a “fail”, where failure indicates a software-coding mistake.

Our fail oracle is a program crash, caused by any type of

memory corrupting bug capable of causing errors such as an

access violation.4 We chose to focus on this important

subclass of bugs because cyber attackers often leverage

memory corruption as the starting point for crafting software

exploits to penetrate systems and networks. Our research

therefore focuses on errors that tend to have software secu-

rity implications. The advancements in our research are

applicable for both defense (software reliability, debugging

and repair) and offense (software attack, with the intent to

exploit rather than repair). Debugging without source code is

particularly relevant to offensive research, since these

approaches will likely not have the source code they are

analyzing.

We developed a distributed fuzzing system to identify,

sort, and rate bugs. Having identified the existence of a fault,

the next step is to localize the error within the code. A

typical approach relies on the basic premise that code

regions (often lines or basic blocks) that occur more

frequently in failing traces5 are more likely to contain the

bug. These suspect regions are identified based on occur-

rence, and then ranked, creating a final list of suspicious

locations. The more similar the passing and failing input

test cases are, the better coverage-based algorithms tend to

perform, because runtime differences are more easily

identified.

We expand upon this general approach in two important

ways:

1. We do not require a preexisting test suite to identify

faults.

2. We do not require source code to perform fault

localization.

These improvements are important because test suites

may be incomplete or expensive to generate. In addition,

source code may not always be available for legacy code or

for offensive research. We address issue 1 by creating test

suites automatically. First, we automatically download

inputs by scouring the Internet. The quality of the inputs is

judged based on code coverage. Second, we expand that set

by systematically modifying the test inputs, a dynamic

testing technique known as fuzzing (Miller et al., 1990).

Issue 2 is addressed because fuzzing can operate on bina-

ries where source is not available. Fuzzing automatically

seeks memory corruptions, a critically important subclass

of bugs that are the basis for most control-flow hijack

vulnerabilities and exploits. Hackers use fuzzing to uncover

bugs and create offensive tools. Commercial developers use

fuzzing as a final test of their codedto keep ahead of the

hackers.

Once fuzzing has identified an input that generates faulty

behavior, we generate a smaller test suite (series of similar

inputs) that is specific to the discovered bug, even though we

don’t yet know where the bug is located. As before, fault

localization requires that the generated test suite have

inputs that generate both passing and failing outputs. We

can then apply a coverage-based algorithm to localize bugs

to basic blocksda unit of code that does not contain

a branch.

Our work provides a number of contributions above and

beyond those already mentioned. Our approach enhances

results by increasing the suspiciousness score of blocks not

thought to be noise (explained in Section 4.3.2). In addition,

we increase accuracy through the addition of an input

tainting, data-flow tracking algorithm (Section 4.3.3). For data

flow tracking we tag key portions of the input data, and note

the basic blocks within the program that operate on the tag-

ged data. After our base FL algorithm scores each block, we

then apply a score modifier (increased suspiciousness) to

each basic block that uses tainted input data.6 In this paper

we will:

1. Describe our novel fault localization approach, and

show that our algorithm outperforms previous

approaches.

2. Describe our technique that allows us to work with closed-

source code.

3. Detail the environment (system) in which our research

currently operates.

1.1. Contributions

Our work differs from prior works in the following significant

ways:

1. We are the first to create an end-to-end bug hunting and

analysis framework that incorporates fuzzing, fault locali-

zation, and visualization. Fuzzing is used to find bugs. Input

data analysis allows us to find the bytes that cause the fault

and automatically create an FL test set. FL is used to identify

the root cause of the bug. Visualization is used for repair or

exploitation.

2. Our system can operate on closed-source applica-

tions, as well as programs where the source code is

present.

3. We are the first to combine selective input tracking via data

tainting with a traditional, code-coverage-based, fault

localization approach. Since we know the bytes that caused

the fault, only those bytes need be tracked, allowing our

algorithm to key in on blocks that operate on suspicious

input.
4 Typical bugs of interest include stack buffer overflows, heap

buffer overflows, off-by-one errors, integer errors, format string
errors, incorrectly referenced memory, etc.

5 A trace is a list of code regions encountered during one
execution of the program given some input.

6 Input data that is tracked throughout a programs lifespan
is considered “tainted input”. Tracking means the input will
taint other data and registers as it is operated on in compiled
code.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 3 0e1 5 7 131

http://dx.doi.org/10.1016/j.cose.2012.09.015
http://dx.doi.org/10.1016/j.cose.2012.09.015

Download English Version:

https://daneshyari.com/en/article/6884341

Download Persian Version:

https://daneshyari.com/article/6884341

Daneshyari.com

https://daneshyari.com/en/article/6884341
https://daneshyari.com/article/6884341
https://daneshyari.com

