
DFRWS 2018 USA d Proceedings of the Eighteenth Annual DFRWS USA

Automated forensic analysis of mobile applications on Android
devices

Xiaodong Lin a, Ting Chen b, *, Tong Zhu c, Kun Yang b, Fengguo Wei d

a Wilfrid Laurier University, Waterloo, Canada
b Center for Cyber Security, University of Electronic Science and Technology of China, Chengdu, China
c School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
d University of South Florida, Florida, USA

Keywords:
Automated forensic analysis
Android applications
Inter-component static analysis
Taint analysis

a b s t r a c t

It is not uncommon that mobile phones are involved in criminal activities, e.g., the surreptitious
collection of credit card information. Forensic analysis of mobile applications plays a crucial part in order
to gather evidences against criminals. However, traditional forensic approaches, which are based on
manual investigation, are not scalable to the large number of mobile applications. On the other hand,
dynamic analysis is hard to automate due to the burden of setting up the proper runtime environment to
accommodate OS differences and dependent libraries and activate all feasible program paths. We pro-
pose a fully automated tool, Fordroid for the forensic analysis of mobile applications on Android.
Fordroid conducts inter-component static analysis on Android APKs and builds control flow and data
dependency graphs. Furthermore, Fordroid identifies what and where information written in local
storage with taint analysis. Data is located by traversing the graphs. This addresses several technique
challenges, which include inter-component string propagation, string operations (e.g., append) and API
invocations. Also, Fordroid identifies how the information is stored by parsing SQL commands, i.e., the
structure of database tables. Finally, we selected 100 random Android applications consisting of 2841
components from four categories for evaluation. Analysis of all apps took 64 h. Fordroid discovered 469
paths in 36 applications that wrote sensitive information (e.g., GPS) to local storage. Furthermore,
Fordroid successfully located where the information was written for 458 (98%) paths and identified the
structure of all (22) database tables.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mobile phones have become essential parts of our lives. Previ-
ously, mobile phoneswere used solely for communication purposes
only. Today, their capabilities have extended to include a myriad of
uses including gaming, social media, online banking and stock
trading. Accompanying the proliferation of mobile devices is the
presence of these devices in crime. In some instances, malicious
developers can collect sensitive information without user knowl-
edge. Mobile applications can also be used as tools to perpetrate
criminal activity or be on the person of those involved in untoward
or criminal behavior. Increasingly mobile devices are seen as key

evidence in many cases. An example being the iPhone of the at-
tackers in the 2015 San Bernadino attack (Wikipedia, 2015) and
mobile devices in Adnan Syeds murder trial (Sali).

Mobile applications process a significant amount of user infor-
mation. A large amount of sensitive information is stored locally on
smartphones (Scrivens and Lin, 2017). Therefore, acquiring and
analyzing artifacts generated bymobile applications is a crucial and
necessary step in the forensic analysis of mobile devices.

Digital forensics on mobile devices is a complicated affair. Data
acquisition and analysis in mobile phone forensics involve the
extraction of information from mobile phones followed by identi-
fying and concluding whether evidence is pertinent to the ongoing
investigation. Conducting a digital forensic investigation often en-
tails complete image extraction, however, it may be appropriate at
times to only extract and examine particular mobile applications. In
these cases, digital evidence on mobile devices are generated by
specific applications and being stored locally.

* Corresponding author.
E-mail addresses: xlin@wlu.ca (X. Lin), brokendragon@uestc.edu.cn (T. Chen),

tong.zh@foxmail.com (T. Zhu), 1481978708@qq.com (K. Yang), fwei@mail.usf.edu
(F. Wei).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

https://doi.org/10.1016/j.diin.2018.04.012
1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 26 (2018) S59eS66

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xlin@wlu.ca
mailto:brokendragon@uestc.edu.cn
mailto:tong.zh@foxmail.com
mailto:1481978708@qq.com
mailto:fwei@mail.usf.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2018.04.012&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.04.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2018.04.012
https://doi.org/10.1016/j.diin.2018.04.012


The digital forensic of local storage on mobile devices needs to
answer the following three questions: what is the information
stored (e.g., GPS); where is the information stored (e.g., file path);
and how the information is stored (e.g., the structure of a database
table). Extensive studies have been conducted in the past to identify
and analyze the artifacts generated by various applications
(Scrivens and Lin, 2017; Anglano, 2014). Dynamic analysis is the
most common practice. More specifically, applications are installed
on test phones or simulation environments. The application is
played manually over a period of time to generate forensic traces.
Unfortunately, this approach has several drawbacks.

First, it is hard to trigger all interesting program paths. Conse-
quently, criminal behaviors may not be discovered by dynamic
analysis. Moreover, it is nontrivial to identify what information is
stored and how it is stored. For example, a file generated by a
mobile application whose content is encoded or whose format is
unknown needs considerable efforts to analyze. An alternative
approach ismanual reverse engineering. However, manually parsing
documents for relevant artifacts was an arduous and long task. This
approach is time consuming and requires rich technical expertise.

Hence, the aforementioned issues have motivated us to pursue
an automated approach to address mobile application forensic
analysis. It is hard to automate dynamic analysis given a large
number of applications due to the differences in runtime environ-
ments (e.g., operation systems, dependent libraries).

This work proposes to automate forensic analysis on Android
applications via static analysis. Our approach overcomes the
shortcomings of manual analysis and dynamic analysis. Particu-
larly, our approach is scalable for a large number of applications
because no human intervention is required. Additionally, our
approach does not need to set up a test environment and can cover
all application codes.

We implement our method in Fordroid, an inter-component
analysis tool which is able to identify what, where and how the in-
formation is stored in local storage. Technically speaking, Fordroid
takes in an Android APK (without source code), then builds control
flow and data dependency graphs after decompiling the APK. Next,
Fordroid identifies the types of sensitive information written in
local storage through taint analysis.Fordroid then reveals theplace
or file path where information is stored by traversing the graphs.
Through our approach, we have overcome several of the technical
challenges resulting from inter-component string propagation,
string operations (e.g., append) and API invocations. Finally,
Fordroid identifies the structure of database tables by parsing SQL
commands extracted from applications.

We randomly selected 100 practical applications which belong
to four categories from a popular Chinese Android application
market, AppChina.1 Fordroid analyzed all applications consisting
of 2841 components in 3860 min (38 min per application). Results
show that there are 469 paths in more that one-third (36 out of
100) of applications which wrote sensitive information to local
storage. Fordroid successfully locates where sensitive informa-
tion was written for 458 (98%) paths. Moreover, the structure of all
(22) database tables which contain sensitive information was suc-
cessfully identified.

In summary, our work makes the following contributions.

(1) We design and implement Fordroid, an inter-component
static forensic tool for Android applications which auto-
matically identifies what, where and how sensitive infor-
mation is stored in local storage.

(2) We conduct experiments on 100 Android applications.
Fordroid discovers that approximately one-third of them
write sensitive information to local storage. Moreover,
Fordroid successfully locates the places sensitive infor-
mation is written for 98% paths and identifies the structure of
all database tables.

The remainder of this paper is organized as follows. Section 2
gives a motivating example. Section 3 describes the design and
implementation of Fordroid. Experimental results are given in
Section 4. The limitations of our approach are discussed in Section
5. We briefly introduce related studies in Section 6 and conclude
this paper in Section 7.

2. Motivating example

In this section, we provide an example of mobile application
forensic analysis. Such examples are commonplace and motivated
our development of Fordroid. We use a practical Android appli-
cation, agilebuddy2 to illustrate the difficulty of manually reverse
engineering and dynamic analysis to locate sensitive information.
agilebuddy is a game application with 703 KB large. It has 13
packages, 7 components, 80 classes and 559 functions. For ease of
presentation, we decompile3 this APK and illustrate its source in
Fig. 1.

Line 138 in function c(), class h, package com.uucunadsks.b
(Fig. 1(a)) produces a string v0_1 by calling the function a(). Line
139 creates a File object v1 using v0_1 as the file name. Line 140
creates another File object v4 which takes in two parameters, v1
and a string, v0_1. Finally, sensitive information is written into this
file in Line 171. It is difficult to reverse engineer this app to locate the
critical four lines of code.

We failed to create the file using dynamic analysis which
prompted us to investigate the reason. To begin, in order to trigger
the code in Line 138, several conditions should be satisfied. First,
the function c() should be called and then the Boolean arg6 (Line
124) should be false. Besides, h.g.length() should be no smaller than
h.f (Line 126) which is 8192 (Line 26). Moreover, h.e should not be
equal to null (Line 128). Additionally, an sdcard should be mounted
(Line 134). The last condition can be satisfied by preparing an
Android phone with sdcard mounted. We found the condition in
Line 128 to be easily satisfied through code inspection. Particularly,
h.e is a context object which is the this pointer of a component.

However, it is hard to meet the condition in Line 126. h.g is a
string, so this condition indicates that the length of this string
should be no shorter than 8 K bytes. h.g is used to log exception
information, as shown in Fig. 1(c) which invokes h.a() to generate
exception information. Please note that the code snippet in Fig. 1(c)
resides in another package, com.uucunadsdk.c which further in-
creases the difficulty of analysis. h.a() (Fig. 1(b)) appends a flag (i.e.,
arg6, Line 72), date, class name, method name, line number and
exception type (i.e., arg8, Line 73) into h.g. Hence, the space
required for logging one exception cannot be longer than 100 bytes.
Consequently, dynamic analysis must trigger at least 80 exceptions
before it creates a file.

Therefore, it is difficult for dynamic analysis to discover the file due
to the difficulty of triggering the program path to the critical code. The
limitations of manual reverse engineering and dynamic analysis
motivate us to develop an automated static approach. We will
demonstrate how Fordroid processes this APK in Section 3.

1 http://www.appchina.com/.

2 http://www.appchina.com/app/com.app.kg.agilebuddy.
3 Decompiled by JEB, https://www.pnfsoftware.com/jeb2/.

X. Lin et al. / Digital Investigation 26 (2018) S59eS66S60

http://www.appchina.com/
http://www.appchina.com/app/com.app.kg.agilebuddy
https://www.pnfsoftware.com/jeb2/


Download English Version:

https://daneshyari.com/en/article/6884377

Download Persian Version:

https://daneshyari.com/article/6884377

Daneshyari.com

https://daneshyari.com/en/article/6884377
https://daneshyari.com/article/6884377
https://daneshyari.com

