
DFRWS 2018 USA d Proceedings of the Eighteenth Annual DFRWS USA

DroidKex: Fast extraction of ephemeral TLS keys from the memory of
Android apps

Benjamin Taubmann*, Omar Alabduljaleel, Hans P. Reiser
University of Passau, Germany

Keywords:
Memory forensics
Semantic gap
TLS
Android

a b s t r a c t

Fast extraction of ephemeral data from the memory of a running process without affecting the perfor-
mance of the analyzed program is a problem when the location and data structure layout of the infor-
mation is not known. In this paper, we introduce DroidKex, an approach for partially reconstructing the
semantics of data structures in order to minimize the overhead required for extracting information from
the memory of applications. We demonstrate the practicability of our approach by applying it to
86Android applications in order to extract the cryptographic key material of TLS connections.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Live forensics on mobile devices becomes more and more
important in the day-to-day jobs of forensic investigators (Casey
and Turnbull, 2011). One common use case is the decryption of
encrypted communication channels such as TLS, which is the most
frequently used protocol for that purpose in the Internet (Krawczyk
et al., 2013).

In this paper, we discuss the problems that arise when
ephemeral TLS session keys of an application should be extracted at
runtime when the exact layout of the data structures and their
position in memory is unknown. The most important questions we
address are: Where is the data located, how can we extract it with
minimal overhead and when is it available in memory?

The concrete use case of this paper is the extraction of the
cryptographic key material required during a TLS connection from
Android applications. One important aspect of our discussion is that
we address the problem of extracting the cryptographic key ma-
terial as efficient and generic as possible so that the performance
and usability of an application should not be affected.

There are different approaches to address the problem of
decrypting TLS connections. The most important approaches are:
using a man-in-the-middle approach, manipulation of the control
flow and extraction of the key from main memory. All three ap-
proaches have advantages and disadvantages.

The man-in-the-middle approach requires that the client
application do not implement certificate pinning, i.e., that it
communicates with the server even if the server does not pre-
sent a valid certificate. However, many Android applications
already use this technique (Fahl et al., 2012). To bypass certificate
pinning, the certificate of the proxy can be installed in the
application key store. With Android Nougat it gets even harder to
use this approach since applications do not trust user or admin-
added CAs unless the applications allow it (Brubaker, 2016). The
application of these tools can lower the security of the inspected
connections (Durumeric et al., 2017; US Cert, 2017; Carnavalet
et al., 2016).

The control flow of an application can be intercepted to extract
information or manipulated to accept any certificate. To extract the
raw communication, the data can be accessed by intercepting
encrypt and decrypt functions of the crypto library. Alternatively,
the control flow can be patched statically (manipulation of the bi-
nary) or dynamically (interception of function calls) so that the
crypto library accepts any certificate even if it is not valid for a
certain domain so that the application can be used with a proxy
(Cipolloni, 2017). These approaches manipulate the normal routine
of an application and make it vulnerable to attacks (Durumeric
et al., 2017; US Cert, 2017; Carnavalet et al., 2016). Only extracting
the encrypted communication data without being able to decrypt
the network streammight lower the forensic soundness of the data.

Another method is to extract the cryptographic keys from the
main memory of a process (Maartmann-Moe et al., 2009). One
possible approach is to test every byte sequence in the memory of
an application as a potential key to decrypt the first TLS message of

* Corresponding author.
E-mail addresses: bt@sec.uni-passau.de (B. Taubmann), alabdu01@gw.uni-

passau.de (O. Alabduljaleel), hr@sec.uni-passau.de (H.P. Reiser).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

https://doi.org/10.1016/j.diin.2018.04.013
1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 26 (2018) S67eS76

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bt@sec.uni-passau.de
mailto:alabdu01@gw.uni-passau.de
mailto:alabdu01@gw.uni-passau.de
mailto:hr@sec.uni-passau.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2018.04.013&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.04.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2018.04.013
https://doi.org/10.1016/j.diin.2018.04.013


a connection (Caragea, 2016; Taubmann et al., 2016). In our evalu-
ation, we measured an average time of 1.35 s for taking a snapshot
of an Android application on themobile device and 15.08 s to locate
the key in it with that approach (see Section 6). When the data
acquisition process requires pausing the application while the
snapshot is taken, this approach does not work on common
Android applications that use multiple TLS connections simulta-
neously. Each snapshot would disrupt the usability of an applica-
tion even when the key extraction process is executed on a PC or in
the cloud since transferring the snapshot to an external entity can
be costly and time intensive.

The contribution of the paper is twofold. First, we present an
approach for locating information quickly in a memory snapshot by
partially reconstructing the semantics of data structures inmemory
instead of scanning the full memory. Thus, this approach narrows
the semantic gap, i.e., the difference between high-level informa-
tion and its low-level representation inmemory. In order to achieve
that, we analyze a memory snapshot of an application in the
training phase and try to find a path of pointers that link data
structures which allows the extraction of informationwithminimal
memory access. Afterwards, in the normal mode, we use that
knowledge to extract information by following the pointers in
corresponding data structures. Second, we provide a proof-of-
concept implementation e DroidKex e that uses this approach
for fast key extraction of TLS connections at run-time of Android
applications and we evaluate it on Android 6 with 86different
applications.

The structure of this paper is as follows: Section 2 provides brief
background knowledge about SSL/TLS and the Android crypto li-
braries. Section 3 describes the DroidKex architecture and the
interaction of its components. Section 4 describes the process of
extracting the key from applications by intercepting the control
flow and Section 5 describes the algorithm to find a path to the data
structures that hold the information. Section 6 measures the per-
formance of DroidKex and Section 7 compares our approach to
related work on decrypting TLS communication. Finally, Section 8
concludes the paper.

2. Transport layer security

The Transport Layer Security (TLS) protocol is the successor of
the Secure Sockets Layer (SSL) protocol and one of the most
frequently used cryptographic protocols on the Internet (Krawczyk
et al., 2013). In this paper, we will use the abbreviation TLS for both
TLS and SSL. TLS provides a standardized way for exchanging
cryptographic key material for establishing symmetric encrypted
communication.

To initiate a new TLS connection, the client and the server ex-
change “Hello” messages that contain client random (CR) and
server random (SR) byte sequences. After the “Hello” messages,
further details may be exchanged including digital certificates
depending on the selected cipher suite. Furthermore, both parties
generate a pre-master secret (PS) using the key exchange algorithm
(such as Diffie Hellmann) specified in the cipher suite. PS, CR, and
SR are used to compute the master secret (MS). MS, CR, and SR are
then used with a pseudo-random function (PRF) to derive the
symmetric keys that are used to encrypt the communication and to
verify the integrity of a TLS. After having the key material
exchanged, both parties send a change cipher spec (CSP) TLS
message to notify each other to start encrypting messages. The byte
sequences MS, CR, and SR are the cryptographic keymaterial that is
extracted by DroidKex.

In order to increase the speed of negotiating new sessions
with the same server, TLS implements the concept of session
resumption. Therefore, the negotiated parameters, i.e., the session

state, are stored either by the client (session ticket) or the server
(session ID) (Salowey et al., 2008). By using one of these methods
the overhead for exchanging new cryptographic key material can
be reduced. DroidKexis able to handle all connections of these three
cases, i.e., negotiation of new material, usage of session tickets and
session IDs.

2.1. Android and SSL

Android uses at least three different layers which are important
for the use of SSL/TLS functionality in applications. The first layer on
top is the application itself. Each Android application is written in
Java and executed by the Dalvik/ART run-time environment. Ap-
plications can either come with their own crypto routines, e.g., in a
separate native library or they can use the libraries provided by
Android.

The core concept behind Android's crypto system is the Java
cryptography architecture (JCA), an interface used by different crypto
libraries and implementations. A cryptographic service provider im-
plements the interface of the JCA and provides the implementation
of cryptographic routines. The most common cryptography pro-
viders for Android are Bouncy Castle and AndroidOpenSSL (Elenkov,
2014).

Bouncy Castle is a pure Java implementation of cryptographic
algorithms and protocols whereas AndroidOpenSSL uses Java
native interface (JNI) calls to access the OpenSSL library on the
native level. In Android 6, Google replaced OpenSSL with Bor-
ingSSL, which is a fork of OpenSSL with Android specific patches.
The default crypto provider of Android is the “AndroidOpenSSL”
provider.1

3. The DroidKex architecture

This section discusses the general approach of the DroidKex
architecture, the assumptions under which it works and the com-
ponents that are required for the proof-of-concept implementation
and the requirements on the target device.

3.1. Approach and goals

The goal of the DroidKex architecture is to extract the ephemeral
information required for decrypting a TLS connection of an Android
application from its main memory, namely the MS which is
required to derive symmetric session keys. The key extraction is
executed synchronous to the control flowof the application, i.e., the
MS is extracted during a TLS session. Otherwise, there is no guar-
antee that the MS is still in main memory because an application
might free or overwrite it directly after the connection terminates.
Thus, we intercept all network related send and receive functions of
an application. If they are handling a TLS connection (the inter-
ception framework resolves the remote address of a file descriptor),
we extract the corresponding MS by dereferencing pointers that
point to a structure holding the cryptographic key material that are
passed to the functions of the crypto library. Even though the layout
of the data structures is known since the implementation of
OpenSSL and BoringSSL is open source, the exact layout of the data
structures is unknown. This is caused by the fact that it changes
based on the used compiler and compiler settings as well as the
version of the library.

To address this problem, we follow a precomputed path starting
with pointers on the calling stack to a data structure holding the

1 https://developer.android.com/about/versions/marshmallow/android-6.0-
changes.html.

B. Taubmann et al. / Digital Investigation 26 (2018) S67eS76S68

https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html


Download English Version:

https://daneshyari.com/en/article/6884380

Download Persian Version:

https://daneshyari.com/article/6884380

Daneshyari.com

https://daneshyari.com/en/article/6884380
https://daneshyari.com/article/6884380
https://daneshyari.com

